|
[1]B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998. [2]N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810−820, May 1992. [3]B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001. [4]J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J.Solid-State Circuits, vol. 35, pp. 1368-1382, 2000. [5]A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628,2001. [6]P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905−910, Jun. 2000. [7]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572. [8]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000. [9]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998. [10]B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001. [11]D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007. [12]P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005. [13]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998. [14]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996. [15]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996. [16]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004. [17]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999. [18]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001. [19]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002. [20]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS [21]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002. [22]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked [23]H. Wu, “Signal generation and processing in high-frequency/high-speed siliconbased integrated circuits,” PhD thesis, California Institute of Technology, 2003. [24]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973. [25]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998. [26]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2075–2084, Nov. 1999. [27]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, p. 4184, 2000. [28]C. Jaewon and S. Chulhun, “Microstrip square open loop multiple split-ring resonator for low-phase-noise VCO,” IEEE Trans. Microwave Theory and Tech., vol. 56, pp. 3245-3252, 2008. [29]I. Gil, J. Bonache, J. G. Garcia, and F. Martin, “Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, June 2006. [30]E. Park and C. Seo, “Low phase noise oscillator using microstrip square open loop resonator,” IEEE MTT-S Int. Microwave Symp., pp. 585-588, June 2006. [31]S. Ko, H. Kim, J. Choi, B. Lee, J. Cho and C. Seo, “24 GHz CMOS voltage controlled oscillator based on the open loop multiple split Ring resonator,” Proceed. Asia-Pacific Microwave Conf. 2010. [32]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001. [33]H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29. [34]C.-C. Liu, C.-C. Wang, S.-L. Jang, and M.-H. Juang,” A SiGe injection-locked-oscillator using HBT injector operated in saturation region,” Microwave Opt Tech Lett., pp.734-737, April, 2011. [35]S.-L. Jang, C.-W. Chang, C.-L. Cheng, C.-W. Hsue, and C.-W. Hsu, " A wide-locking range divide-by-3 LC-tank injection-locked frequency divider,” pp. 1-4, IEEE Int. VLSI- DAT, 2011. [36]S.-L. Jang, C.-W. Hsu, C.-W. Chang and C.-W. Hsue, ” Wide-band 3 injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Microwave Opt Tech Lett., pp.609-611, March, 2011. [37]C.-C.Wang, Z. Chen, V. Jain, and P. Heydari, “Design and analysis of a silicon-based millimeter-wave divide-by-3 injection-locked frequency divider,” in Proc. IEEE Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2009. [38]S.-L. Jang, C.-W. Huang, C.-W. Chang, and C.-W. Hsue, ” A parallel-injection Injection locked frequency divider in 0.35 μm SiGe HBT process,” Microwave Opt Tech Lett ., pp.379-383, Feb., 2012. [39]S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010. [40]S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010. [41]S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol. E91-C, no. 6, pp. 956–962, Jun. 2008. [42]S.-L. Jang, J.-F. Huang, C.-W. Huang C.-W. Hsue and C.-W. Chang, ” Low-voltage wide-locking range LC-tank divide-by-3 injection-locked frequency divider” Int. J. Electron. Letts. Vol. 1, pp.62-68, 2013. [43]S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010. [44]S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010. [45]S.-L. Jang, R.-K. Yang, C.-C. Liu, and C.-W. Hsue, "A low power SiGe BiCMOS series-tuned divide-by-3 injection locked oscillators," Microwave Opt Tech Lett 51 (2009), 2239–2242. [46]S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35 μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008. [47]S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., Vol.E93-C,No.1,pp.136-139, Jan. 2010. [48]S.-L. Jang, Y.-S. Chen, C.-W. Chang and C.-C. Liu,” injection-locked frequency dividing apparatus”, US patent # US008305116B2, 2012. [49]Y.-T. Chen, M.-W. Li, H.-C. Kuo,T.-H. Huang, and H.-R. Chuang, “Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012. [50]A. Mazzanti and P. Andreani, “Class-C harmonic CMOS VCOs, with a general result on phase noise,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2716–2729, Dec. 2008. [51]K. Okada, Y. Nomiyana, R. Murakami, and A. Matsuzawa, “A 0.114 mW dual-conduction class-C CMOS VCO with 0.2 V power supply,” in Proc. IEEE Symp. Circuits, Jun. 2009, pp. 228–229. [52]J. Chen, F. Jonsson, M. Carlsson, C. Hedenas, and L. R. Zheng, “A low power, start-up ensured and constant amplitude class-C VCO in 0.18 um CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp.427–429, Aug. 2011. [53]L. Fanori and P. Andreani, "Highly efficient class-C CMOS VCOs, including a comparison with class-B VCOs," IEEE J. Solid. State Circuits, vol.48, no.7, pp. 1730-1740, 2013. [54]S.-L. Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned injection-locked frequency divider,” published online, Analog Integr Circ Sig Process., vol. 76, Issue 1, pp. 111-116, 2013. [55]S.-L. Jang, and J.-H. Hsieh, ” A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms,” Analog Integr Circ Sig Process., Vol. 77, pp 593-598 , 2013. [56]S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang , ” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008. [57]K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injectionlocked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., pp. 2472–2481, Feb. 2006.
|