|
1.Wagoner Johnson AJ, Herschler BA., A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater, 2011. 7: p. 16-30. 2.Scaffaro, R., F. Lopresti, L. Botta, S. Rigogliuso, and G. Ghersi, Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016. 63: p. 303-313. 3.Fang H.W., Kao W.Y., Lin P.I., Chang G.W., Hung Y.J., Chen R.M., Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composi tes on Improving Osteoblast Maturation. Annals of Biomedical Engineering, 2015. 43(8). 4.Bouler, J.M., P. Pilet, O. Gauthier, and E. Verron, Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomaterialia, 2017. 5.Luinstra, G.A. and E. Borchardt, Material properties of poly(propylene carbonates). Adv. Polym. Sci, 2012. 245: p. 29-48. 6.Denry, I. and L.T. Kuhn, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016. 32(1): p. 43-53. 7.Yao, M., H. Deng, F. Mai, K. Wang, Q. Zhang, F. Chen, and Q. Fu, Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride. Express Polym. Lett, 2011. 5: p. 937-949. 8.Santoro, M., S.R. Shah, J.L. Walker, and A.G. Mikos, Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2016. 107: p. 206-212. 9.University, H.K.B., Non-coding RNA molecule could play a role in osteoporosis, in The bone remodelling process. 2017. 10.Ching Li Tseng, Po Chih Hsu, Lin Gwei Wei, Te Hsing Wu, Li Han Shen, Guang Wei Chang, Hsu Wei Fang, Jui Che Tsai, Yi Ching Shen, Chi Chang Wu, Tim Mo Chen, Effect of platelet-rich plasma mixed with a polymeric bone filling material on sinus floor augmentation in rabbits. Biomedical Engineering: Applications, Basis and Communications, 2013. 25(5). 11.Bunpetch, V., Z.-Y. Zhang, X. Zhang, S. Han, P. Zongyou, H. Wu, and O. Hongwei, Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials, 2017. 12.Chen, F.-M. and X. Liu, Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 2016. 53: p. 86-168. 13.Ain, Q.U., A.N. Khan, M. Nabavinia, and M. Mujahid, Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications. Materials Science and Engineering: C, 2017. 75: p. 807-815. 14.Minardi, S., B. Corradetti, F. Taraballi, M. Sandri, J. Van Eps, F.J. Cabrera, B.K. Weiner, A. Tampieri, and E. Tasciotti, Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials, 2015. 62: p. 128-137. 15.Hospodiuk, M., M. Dey, D. Sosnoski, and I.T. Ozbolat, The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 2017. 35(2): p. 217-239. 16.Brennan, O., B. Stenson, A. Widaa, D.M. O׳Gorman, and F.J. O׳Brien, Incorporation of the natural marine multi-mineral dietary supplement Aquamin enhances osteogenesis and improves the mechanical properties of a collagen-based bone graft substitute. Journal of the Mechanical Behavior of Biomedical Materials, 2015. 47: p. 114-123. 17.Xiaofei Ma, Jiugao Yu, Ning Wang, Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J. Polym. Sci. Pt. B-Polym. Phys.,, 2006. 44: p. 94-101. 18.Bhuvanesh Gupta, Nilesh Revagade, Jöns Hilborn, Poly(lactic acid) fiber: an overview. Prog. Polym. Sci., 2007. 32: p. 455-482. 19.Po-Liang Lin, Hsu-Wei Fang, Tiffany Tseng, Wun-Hsing Lee, Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Materials Letters, 2007. 61(14-15). 20.Sriram, M., R. Sainitya, V. Kalyanaraman, S. Dhivya, and N. Selvamurugan, Biomaterials mediated microRNA delivery for bone tissue engineering. International Journal of Biological Macromolecules, 2015. 74: p. 404-412. 21.Ganji, Y., Q. Li, E.S. Quabius, M. Böttner, C. Selhuber-Unkel, and M. Kasra, Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials Science and Engineering: C, 2016. 59: p. 10-18. 22.Vasconcelos, D.M., R.M. Gonçalves, C.R. Almeida, I.O. Pereira, M.I. Oliveira, N. Neves, A.M. Silva, A.C. Ribeiro, C. Cunha, A.R. Almeida, C.C. Ribeiro, A.M. Gil, E. Seebach, K.L. Kynast, W. Richter, M. Lamghari, S.G. Santos, and M.A. Barbosa, Fibrinogen scaffolds with immunomodulatory properties promote in vivo bone regeneration. Biomaterials, 2016. 111: p. 163-178. 23.Kaur, K., K.J. Singh, V. Anand, G. Bhatia, R. Kaur, M. Kaur, L. Nim, and D.S. Arora, Scaffolds of hydroxyl apatite nanoparticles disseminated in 1, 6-diisocyanatohexane-extended poly(1, 4-butylene succinate)/poly(methyl methacrylate) for bone tissue engineering. Materials Science and Engineering: C, 2017. 71: p. 780-790. 24.Luo, Z., Y. Yang, Y. Deng, Y. Sun, H. Yang, and S. Wei, Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2016. 143: p. 243-251. 25.El-Rashidy, A.A., J.A. Roether, L. Harhaus, U. Kneser, and A.R. Boccaccini, Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomaterialia, 2017. 62: p. 1-28. 26.Serra, I.R., R. Fradique, M.C.S. Vallejo, T.R. Correia, S.P. Miguel, and I.J. Correia, Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Materials Science and Engineering: C, 2015. 55: p. 592-604. 27.Shadjou, N. and M. Hasanzadeh, Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress. Materials Science and Engineering: C, 2015. 55: p. 401-409. 28.Wang, J., F. Witte, T. Xi, Y. Zheng, K. Yang, Y. Yang, D. Zhao, J. Meng, Y. Li, W. Li, K. Chan, and L. Qin, Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomaterialia, 2015. 21: p. 237-249. 29.Berglund, I.S., B.Y. Jacobs, K.D. Allen, S.E. Kim, A. Pozzi, J.B. Allen, and M.V. Manuel, Peri-implant tissue response and biodegradation performance of a Mg–1.0Ca–0.5Sr alloy in rat tibia. Materials Science and Engineering: C, 2016. 62: p. 79-85. 30.Fernandez-Yague, M.A., S.A. Abbah, L. McNamara, D.I. Zeugolis, A. Pandit, and M.J. Biggs, Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 2015. 84: p. 1-29. 31.Sagar, N., K. Khanna, V.S. Sardesai, A.K. Singh, M. Temgire, M.P. Kalita, S.S. Kadam, V.P. Soni, D. Bhartiya, and J.R. Bellare, Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization. Materials Science and Engineering: C, 2016. 69: p. 700-714. 32.Kumar, A., S. Mandal, S. Barui, R. Vasireddi, U. Gbureck, M. Gelinsky, and B. Basu, Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, 2016. 103: p. 1-39. 33.Terranova, L., D.M. Dragusin, R. Mallet, E. Vasile, I.-C. Stancu, C. Behets, and D. Chappard, Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles. Micron, 2017. 93: p. 29-37. 34.Sevim, K. and J. Pan, A model for hydrolytic degradation and erosion of biodegradable polymers. Acta Biomaterialia, 2018. 66: p. 192-199. 35.Przekora, A., K. Palka, and G. Ginalska, Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration — A comparative study. Materials Science and Engineering: C, 2016. 58: p. 891-899. 36.Behera, S., D. Naskar, S. Sapru, P. Bhattacharjee, T. Dey, A.K. Ghosh, M. Mandal, and S.C. Kundu, Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: Promising platform for bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(5): p. 1745-1759. 37.Mao, D., Q. Li, N. Bai, H. Dong, and D. Li, Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydrate Polymers, 2018. 180: p. 104-111. 38.Dadsetan, M., T. Guda, M.B. Runge, D. Mijares, R.Z. LeGeros, J.P. LeGeros, D.T. Silliman, L. Lu, J.C. Wenke, P.R. Brown Baer, and M.J. Yaszemski, Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomaterialia, 2015. 18: p. 9-20. 39.Soballe, K., E. Hansen, H. Brockstedt-Rasmussen, and C. Bunger, Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. Bone & Joint Journal, 1993. 75(2): p. 270-278. 40.Martínez-Vázquez, F.J., M.V. Cabañas, J.L. Paris, D. Lozano, and M. Vallet-Regí, Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomaterialia, 2015. 15: p. 200-209. 41.Fayyazbakhsh, F., M. Solati-Hashjin, A. Keshtkar, M.A. Shokrgozar, M.M. Dehghan, and B. Larijani, Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2017. 158: p. 697-708. 42.Neufurth, M., X. Wang, S. Wang, R. Steffen, M. Ackermann, N.D. Haep, H.C. Schröder, and W.E.G. Müller, 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomaterialia, 2017. 64: p. 377-388. 43.Venkatesan, J., I. Bhatnagar, P. Manivasagan, K.-H. Kang, and S.-K. Kim, Alginate composites for bone tissue engineering: A review. International Journal of Biological Macromolecules, 2015. 72: p. 269-281. 44.García-Gareta, E., M.J. Coathup, and G.W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015. 81: p. 112-121. 45.Yunus Basha, R., S.K. T.S, and M. Doble, Design of biocomposite materials for bone tissue regeneration. Materials Science and Engineering: C, 2015. 57: p. 452-463. 46.Mahmood, S.K., M.Z.A.B. Zakaria, I.S.B.A. Razak, L.M. Yusof, A.Z. Jaji, I. Tijani, and N.I. Hammadi, Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochemistry and Biophysics Reports, 2017. 10: p. 237-251. 47.Valverde, T.M., E.G. Castro, M.H.S. Cardoso, P.A. Martins-Júnior, L.M.O. Souza, P.P. Silva, L.O. Ladeira, and G.T. Kitten, A novel 3D bone-mimetic scaffold composed of collagen/MTA/MWCNT modulates cell migration and osteogenesis. Life Sciences, 2016. 162: p. 115-124. 48.Senn, N., On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. The American Journal of the Medical Sciences, 1889. 98(3): p. 219-247. 49.Begam, H., S.K. Nandi, B. Kundu, and A. Chanda, Strategies for delivering bone morphogenetic protein for bone healing. Materials Science and Engineering: C, 2017. 70, Part 1: p. 856-869. 50.Yang, X., A. Al Hegy, E.R. Gauthier, and J. Gray-Munro, Influence of mixed organosilane coatings with variable RGD surface densities on the adhesion and proliferation of human osteosarcoma Saos-2 cells to magnesium alloy AZ31. Bioactive Materials, 2017. 2(1): p. 35-43. 51.Jayaraman, P., C. Gandhimathi, J.R. Venugopal, D.L. Becker, S. Ramakrishna, and D.K. Srinivasan, Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Advanced Drug Delivery Reviews, 2015. 94: p. 77-95. 52.Kim, Y.-H. and Y. Tabata, Dual-controlled release system of drugs for bone regeneration. Advanced Drug Delivery Reviews, 2015. 94: p. 28-40. 53.Kerckhofs, G., Y.C. Chai, F.P. Luyten, and L. Geris, Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation. Acta Biomaterialia, 2016. 35: p. 330-340. 54.Guillaume, O., M.A. Geven, C.M. Sprecher, V.A. Stadelmann, D.W. Grijpma, T.T. Tang, L. Qin, Y. Lai, M. Alini, J.D. de Bruijn, H. Yuan, R.G. Richards, and D. Eglin, Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia, 2017. 54: p. 386-398. 55.Farokhi, M., F. Mottaghitalab, M.A. Shokrgozar, K.-L. Ou, C. Mao, and H. Hosseinkhani, Importance of dual delivery systems for bone tissue engineering. Journal of Controlled Release, 2016. 225: p. 152-169. 56.Pilipchuk, S.P., A.B. Plonka, A. Monje, A.D. Taut, A. Lanis, B. Kang, and W.V. Giannobile, Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dental Materials, 2015. 31(4): p. 317-338. 57.Gunnella, F., E. Kunisch, S. Maenz, V. Horbert, L. Xin, J. Mika, J. Borowski, S. Bischoff, H. Schubert, A. Sachse, B. Illerhaus, J. Günster, J. Bossert, K.D. Jandt, F. Plöger, R.W. Kinne, O. Brinkmann, and M. Bungartz, The GDF5 mutant BB-1 enhances the bone formation induced by an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. The Spine Journal, 2017. 58.Danoux, C.B.S.S., D.C. Bassett, Z. Othman, A.I. Rodrigues, R.L. Reis, J.E. Barralet, C.A. van Blitterswijk, and P. Habibovic, Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015. 17: p. 1-15. 59.Ginjupalli, K., G.V. Shavi, R.K. Averineni, M. Bhat, N. Udupa, and P. Nagaraja Upadhya, Poly(α-hydroxy acid) based polymers: A review on material and degradation aspects. Polymer Degradation and Stability, 2017. 144: p. 520-535. 60.Kluin, J., H. Talacua, A.I.P.M. Smits, M.Y. Emmert, M.C.P. Brugmans, E.S. Fioretta, P.E. Dijkman, S.H.M. Söntjens, R. Duijvelshoff, S. Dekker, M.W.J.T. Janssen-van den Broek, V. Lintas, A. Vink, S.P. Hoerstrup, H.M. Janssen, P.Y.W. Dankers, F.P.T. Baaijens, and C.V.C. Bouten, In situ heart valve tissue engineering using a bioresorbable elastomeric implant – From material design to 12 months follow-up in sheep. Biomaterials, 2017. 125: p. 101-117. 61.Laycock, B., M. Nikolić, J.M. Colwell, E. Gauthier, P. Halley, S. Bottle, and G. George, Lifetime prediction of biodegradable polymers. Progress in Polymer Science, 2017. 71: p. 144-189. 62.Stratton, S., N.B. Shelke, K. Hoshino, S. Rudraiah, and S.G. Kumbar, Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 2016. 1(2): p. 93-108. 63.Lin, Y., W. Xiao, B.S. Bal, and M.N. Rahaman, Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Materials Science and Engineering: C, 2016. 67: p. 440-452. 64.Prabhu, D.B., P. Gopalakrishnan, and K.R. Ravi, Coatings on implants: Study on similarities and differences between the PCL coatings for Mg based lab coupons and final components. Materials & Design, 2017. 135: p. 397-410. 65.Keller, L., A. Regiel-Futyra, M. Gimeno, S. Eap, G. Mendoza, V. Andreu, Q. Wagner, A. Kyzioł, V. Sebastian, G. Stochel, M. Arruebo, and N. Benkirane-Jessel, Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(7): p. 2231-2240. 66.Ndazi, B.S. and S. Karlsson, Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym. Lett, 2011. 5: p. 119-131. 67.Salerno, A., M. Fernández-Gutiérrez, J. San Román del Barrio, and C. Domingo, Bio-safe fabrication of PLA scaffolds for bone tissue engineering by combining phase separation, porogen leaching and scCO2 drying. The Journal of Supercritical Fluids, 2015. 97: p. 238-246. 68.Carothers, W.H., G. Dorough, and F.v. Natta, Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. Journal of the American Chemical Society, 1932. 54(2): p. 761-772. 69.Ta-I Yang, Po-Liang Lin, Guang-Wei Chang, Yu-Chen Tseng, Zhe-Yang Yu, Charng-Bin Yang, Guo-Chung Dong, Hsu-Wei Fang, A New Class of Biocompatible Tricalcium Phosphate/ Polypropylene Carbonate/Polylactic Acid Nanocomposites with Controlled Flexibility and Biodegradability. Current Nanoscience, 2014. 10. 70.Wang, T., L.C. Chow, S.A. Frukhtbeyn, A.H. Ting, Q. Dong, M. Yang, and J.W. Mitchell, Improve the strength of PLA/HA composite through the use of surface initiated polymerization and phosphonic acid coupling agent. J. Res. Natl. Inst. Stand. Technol., 2011. 116(5): p. 785-796. 71.Farah, S., D.G. Anderson, and R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016. 107: p. 367-392. 72.Zibiao Li, Beng HoonTan, Tingting Lin, Chaobin He, Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Progress in Polymer Science, 2016. 62: p. 22-72. 73.Diaz-Gomez, L., C.A. García-González, J. Wang, F. Yang, S. Aznar-Cervantes, J.L. Cenis, R. Reyes, A. Delgado, C. Évora, A. Concheiro, and C. Alvarez-Lorenzo, Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. International Journal of Pharmaceutics, 2017. 527(1–2): p. 115-125. 74.Iqbal, H., M. Ali, R. Zeeshan, Z. Mutahir, F. Iqbal, M.A.H. Nawaz, L. Shahzadi, A.A. Chaudhry, M. Yar, S. Luan, A.F. Khan, and I.-u. Rehman, Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids and Surfaces B: Biointerfaces, 2017. 160: p. 553-563. 75.Farokhi, M., F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, and D.L. Kaplan, Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2017. 76.Grünewald, T.A., A. Ogier, J. Akbarzadeh, M. Meischel, H. Peterlik, S. Stanzl-Tschegg, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger, Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant – A scanning small-angle X-ray scattering time study. Acta Biomaterialia, 2016. 31: p. 448-457. 77.Grünewald, T.A., H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger, Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials, 2016. 76: p. 250-260. 78.Carlos Barreto, Eddy Hansen, Siw Fredriksen, Novel solventless purification of poly(propylene carbonate): Tailoring the comp osition and thermal properties of PPC. Polymer Degradation and Stability, 2012. 97(6). 79.Zou, Q., J. Liao, J. Li, and Y. Li, Evaluation of the osteoconductive potential of poly (propylene carbonate)/nano-hydroxyapatite composites mimicking the osteogenic niche for bone augmentation. Journal of Biomaterials Science, Polymer Edition, 2017. 28(4): p. 350-364. 80.Zhang, S., Z. Ren, X. Sun, H. Li, and S. Yan, Effects of Composition and Melting Time on the Phase Separation of Poly (3-hydroxybutyrate)/Poly (propylene carbonate) Blend Thin Films. Langmuir, 2017. 33(5): p. 1202-1209.
|