跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張光偉
研究生(外文):Chang, Guang-Wei
論文名稱:創新可塑形複合骨填補材料之研究
論文名稱(外文):Study of novel malleable composite scaffold for bone defect repair
指導教授:陳天牧陳天牧引用關係方旭偉方旭偉引用關係
指導教授(外文):Chen, Tim-MoFang, Hsu-Wei
口試委員:蘇真瑩魏暘陳克紹曾靖孋
口試日期:2018-01-30
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:86
中文關鍵詞:彈性生物相容性生物可分解性磷酸鈣聚乳酸聚碳酸丙烯酯
外文關鍵詞:flexiblebiocompatiblebiodegradablepolypropylene carbonatetricalcium phosphatehydroxyapatitepolylactic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
具有骨傳導性的植入物可促進骨缺損修復。臨床常見的骨缺損常發生於嚴重創傷、腫瘤、感染或是先天性的肌肉骨骼疾病之併發症。組織中若有骨組織缺損,植入具有骨缺損修復的材料,促進骨組織再生是不可缺少的治療行為。評估開發促進骨缺損組織修復之生醫材料是否合適,需要建立臨床相關的體外與體內評估的模型,研究材料的生物相容性、力學性質、降解以及生醫材料在動物組織內相互關係。臨床上有許多具有良好生物相容性、優異的力學強度、材料可降解、低毒性等生醫材料應用。隨著此議題的愈加深入的探討,許多骨填補材料的臨床應用亦被廣泛的發想,同時也有許多的材料被應用於骨組織修復上。
在臨床應用經驗上,使用骨水泥或是填充骨粉修復骨缺損部位是常用的方法,但在使用骨水泥填補過程中,將有放熱反應存在可能傷及骨周邊組織的潛在風險;而使用以粉末狀的骨填補材料進行填補也有機械強度不足的問題,需要以骨釘或是骨板進行輔助,增加臨床應用的複雜度。本研究即是考量臨床實用性下進行以常溫下易塑型,易切削,具有一定機械強度且為多孔性可分解材料作為新型骨填補材料實驗設計。在本研究中,透過設計一種新型且具有彈性多孔複合材料,結合聚碳酸丙烯酯(PPC),聚乳酸(PDLA)和磷酸鈣(β-TCP)等材料特性,作為骨傳導支架。並且使用鹽析法作為一種複合材料簡易造孔的無溶劑操作法。透過體外與體內評估進行材料功能性檢測,機械性質測試,研究此新型材料的生物相容性、力學性質、降解性質。
  由動物實驗模型結果顯示以PPC / PDLA / TCP重量比為90/8/2製備的PPTE多孔支架是(1)具有生物相容性的,透過細胞培養研究並在動物體內產生最小的炎症反應; (2)具有延展性,使得支架可以容易地填補到骨缺損中而不破裂;和(3)PPTE多孔支架具生物降解性以及且骨傳導性的,可促進新骨向骨缺損修復漸進形成。本材料也可以與PRP膠進行結合,使得此新型骨填補材料兼具骨傳導性以及骨誘導性,可以促進缺損骨組織癒合。實驗結果表明,本研究所開發的新型支架與骨誘導劑如PRP膠,骨形態發生蛋白,脫礦骨基質或間質細胞的組合用於修復骨缺損將具有成為新型臨床應用生物材料的潛力。
An osteoconductive scaffold can facilitate bone defect repair. Bone defects are serious complications that are most commonly caused by extensive trauma, tumors, infections, or congenital musculoskeletal disorders. If nonunion occurs, the implantation of biomaterials developed as a bone defect filler, which can promote bone regeneration, is essential. In order to evaluate biomaterials for potential development as bone substitutes for bone defect repair, it is essential to establish clinically relevant in vitro and in vivo testing models to investigate their biocompatibility, mechanical properties, degradation, and interactions with the culture medium or host tissues. In clinical practice, the treatment of bone defect would commonly use bone cement or bone graft with powder. However, the exothermic reaction would at the potential risk of injuring harm to the outside organization while filling bone cement. Instead of the use of powdered bone-filling materials also has the issue of insufficient mechanical strength which would be assisted with some bone screws or bone plates that made the clinical applications much more complexity. In this study, a novel elastic porous composite comprising poly(propylene carbonate) (PPC), poly(D-lactic acid) (PDLA), and β-tricalcium phosphate (β-TCP) was prepared as an osteoconductive scaffold. A salt-leaching method is a nonsolvent and easily operated method used to mold up the porous scaffolds.
  The novel malleable composite scaffolds composed of PPC/PDLA/TCP were evaluated as bone substitutes for bone defect repair. The animal model results demonstrated that a PPTE porous scaffold made with a PPC/PDLA/TCP weight ratio of 90/8/2 is (1) biocompatible, yielding a positive cell culture study and minimal inflammatory response in vivo; (2) malleable, such that the scaffold can be molded into the bone defect easily without fracturing; and (3) biodegradable and osteoconductive, promoting the progressive formation of new bone into the bone defect. These results indicated that the combination of this scaffold with osteoinductive agents, such as bone morphogenetic protein, demineralized bone matrix, or mesenchymal cells, might generate new biomaterial for bone defect repair.
摘 要 i
ABSTRACT iii
致謝 v
CONTENTS vi
TABLE CONTENTS vii
FIGURE CONTENTS viii
Chapter 1 Introduction 1
Chapter 2 Background 5
2.1 Historical perspective of polymer as a bone implantable material 5
2.2 In vitro and functional testing of biodegradable polymers for bone implants 15
2.3 In vivo testing of biodegradable polymers for bone implants 19
Chapter 3 Materials and experiment methods 23
3.1 Materials 23
3.2 Preparation of porous PPC/PDLLA/β-TCP scaffolds 24
3.3 Mechanical testing 27
3.4 Cell culturing 28
3.5 Bioactivity analysis 28
3.6 Preparation of rabbit PRP and PRP gel 32
Chapter 4 Effects of polymer scaffolds under in vitro testing 34
4.1 Mechanical properties of polymer composites 34
4.2 Porous β-TCP/PPC/PDLLA scaffolds 39
4.3 Measurement of the water contact angle 43
4.4 PPTE composite encouraged adhesion of mouse osteoblasts 47
4.5 Discussion 54
4.6 Conclusion 57
Chapter 5 Effects of polymer scaffolds in animal model 59
5.1 Surgical procedures 62
5.2 Micro-computed-tomography analysis 67
5.3 Histological evaluations 73
Chapter 6 Conclusions 77
References 79
1.Wagoner Johnson AJ, Herschler BA., A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater, 2011. 7: p. 16-30.
2.Scaffaro, R., F. Lopresti, L. Botta, S. Rigogliuso, and G. Ghersi, Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016. 63: p. 303-313.
3.Fang H.W., Kao W.Y., Lin P.I., Chang G.W., Hung Y.J., Chen R.M., Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composi tes on Improving Osteoblast Maturation. Annals of Biomedical Engineering, 2015. 43(8).
4.Bouler, J.M., P. Pilet, O. Gauthier, and E. Verron, Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomaterialia, 2017.
5.Luinstra, G.A. and E. Borchardt, Material properties of poly(propylene carbonates). Adv. Polym. Sci, 2012. 245: p. 29-48.
6.Denry, I. and L.T. Kuhn, Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016. 32(1): p. 43-53.
7.Yao, M., H. Deng, F. Mai, K. Wang, Q. Zhang, F. Chen, and Q. Fu, Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride. Express Polym. Lett, 2011. 5: p. 937-949.
8.Santoro, M., S.R. Shah, J.L. Walker, and A.G. Mikos, Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2016. 107: p. 206-212.
9.University, H.K.B., Non-coding RNA molecule could play a role in osteoporosis, in The bone remodelling process. 2017.
10.Ching Li Tseng, Po Chih Hsu, Lin Gwei Wei, Te Hsing Wu, Li Han Shen, Guang Wei Chang, Hsu Wei Fang, Jui Che Tsai, Yi Ching Shen, Chi Chang Wu, Tim Mo Chen, Effect of platelet-rich plasma mixed with a polymeric bone filling material on sinus floor augmentation in rabbits. Biomedical Engineering: Applications, Basis and Communications, 2013. 25(5).
11.Bunpetch, V., Z.-Y. Zhang, X. Zhang, S. Han, P. Zongyou, H. Wu, and O. Hongwei, Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials, 2017.
12.Chen, F.-M. and X. Liu, Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 2016. 53: p. 86-168.
13.Ain, Q.U., A.N. Khan, M. Nabavinia, and M. Mujahid, Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications. Materials Science and Engineering: C, 2017. 75: p. 807-815.
14.Minardi, S., B. Corradetti, F. Taraballi, M. Sandri, J. Van Eps, F.J. Cabrera, B.K. Weiner, A. Tampieri, and E. Tasciotti, Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials, 2015. 62: p. 128-137.
15.Hospodiuk, M., M. Dey, D. Sosnoski, and I.T. Ozbolat, The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances, 2017. 35(2): p. 217-239.
16.Brennan, O., B. Stenson, A. Widaa, D.M. O׳Gorman, and F.J. O׳Brien, Incorporation of the natural marine multi-mineral dietary supplement Aquamin enhances osteogenesis and improves the mechanical properties of a collagen-based bone graft substitute. Journal of the Mechanical Behavior of Biomedical Materials, 2015. 47: p. 114-123.
17.Xiaofei Ma, Jiugao Yu, Ning Wang, Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J. Polym. Sci. Pt. B-Polym. Phys.,, 2006. 44: p. 94-101.
18.Bhuvanesh Gupta, Nilesh Revagade, Jöns Hilborn, Poly(lactic acid) fiber: an overview. Prog. Polym. Sci., 2007. 32: p. 455-482.
19.Po-Liang Lin, Hsu-Wei Fang, Tiffany Tseng, Wun-Hsing Lee, Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Materials Letters, 2007. 61(14-15).
20.Sriram, M., R. Sainitya, V. Kalyanaraman, S. Dhivya, and N. Selvamurugan, Biomaterials mediated microRNA delivery for bone tissue engineering. International Journal of Biological Macromolecules, 2015. 74: p. 404-412.
21.Ganji, Y., Q. Li, E.S. Quabius, M. Böttner, C. Selhuber-Unkel, and M. Kasra, Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials Science and Engineering: C, 2016. 59: p. 10-18.
22.Vasconcelos, D.M., R.M. Gonçalves, C.R. Almeida, I.O. Pereira, M.I. Oliveira, N. Neves, A.M. Silva, A.C. Ribeiro, C. Cunha, A.R. Almeida, C.C. Ribeiro, A.M. Gil, E. Seebach, K.L. Kynast, W. Richter, M. Lamghari, S.G. Santos, and M.A. Barbosa, Fibrinogen scaffolds with immunomodulatory properties promote in vivo bone regeneration. Biomaterials, 2016. 111: p. 163-178.
23.Kaur, K., K.J. Singh, V. Anand, G. Bhatia, R. Kaur, M. Kaur, L. Nim, and D.S. Arora, Scaffolds of hydroxyl apatite nanoparticles disseminated in 1, 6-diisocyanatohexane-extended poly(1, 4-butylene succinate)/poly(methyl methacrylate) for bone tissue engineering. Materials Science and Engineering: C, 2017. 71: p. 780-790.
24.Luo, Z., Y. Yang, Y. Deng, Y. Sun, H. Yang, and S. Wei, Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 2016. 143: p. 243-251.
25.El-Rashidy, A.A., J.A. Roether, L. Harhaus, U. Kneser, and A.R. Boccaccini, Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. Acta Biomaterialia, 2017. 62: p. 1-28.
26.Serra, I.R., R. Fradique, M.C.S. Vallejo, T.R. Correia, S.P. Miguel, and I.J. Correia, Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Materials Science and Engineering: C, 2015. 55: p. 592-604.
27.Shadjou, N. and M. Hasanzadeh, Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress. Materials Science and Engineering: C, 2015. 55: p. 401-409.
28.Wang, J., F. Witte, T. Xi, Y. Zheng, K. Yang, Y. Yang, D. Zhao, J. Meng, Y. Li, W. Li, K. Chan, and L. Qin, Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomaterialia, 2015. 21: p. 237-249.
29.Berglund, I.S., B.Y. Jacobs, K.D. Allen, S.E. Kim, A. Pozzi, J.B. Allen, and M.V. Manuel, Peri-implant tissue response and biodegradation performance of a Mg–1.0Ca–0.5Sr alloy in rat tibia. Materials Science and Engineering: C, 2016. 62: p. 79-85.
30.Fernandez-Yague, M.A., S.A. Abbah, L. McNamara, D.I. Zeugolis, A. Pandit, and M.J. Biggs, Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Advanced Drug Delivery Reviews, 2015. 84: p. 1-29.
31.Sagar, N., K. Khanna, V.S. Sardesai, A.K. Singh, M. Temgire, M.P. Kalita, S.S. Kadam, V.P. Soni, D. Bhartiya, and J.R. Bellare, Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization. Materials Science and Engineering: C, 2016. 69: p. 700-714.
32.Kumar, A., S. Mandal, S. Barui, R. Vasireddi, U. Gbureck, M. Gelinsky, and B. Basu, Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, 2016. 103: p. 1-39.
33.Terranova, L., D.M. Dragusin, R. Mallet, E. Vasile, I.-C. Stancu, C. Behets, and D. Chappard, Repair of calvarial bone defects in mice using electrospun polystyrene scaffolds combined with β-TCP or gold nanoparticles. Micron, 2017. 93: p. 29-37.
34.Sevim, K. and J. Pan, A model for hydrolytic degradation and erosion of biodegradable polymers. Acta Biomaterialia, 2018. 66: p. 192-199.
35.Przekora, A., K. Palka, and G. Ginalska, Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration — A comparative study. Materials Science and Engineering: C, 2016. 58: p. 891-899.
36.Behera, S., D. Naskar, S. Sapru, P. Bhattacharjee, T. Dey, A.K. Ghosh, M. Mandal, and S.C. Kundu, Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: Promising platform for bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(5): p. 1745-1759.
37.Mao, D., Q. Li, N. Bai, H. Dong, and D. Li, Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydrate Polymers, 2018. 180: p. 104-111.
38.Dadsetan, M., T. Guda, M.B. Runge, D. Mijares, R.Z. LeGeros, J.P. LeGeros, D.T. Silliman, L. Lu, J.C. Wenke, P.R. Brown Baer, and M.J. Yaszemski, Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomaterialia, 2015. 18: p. 9-20.
39.Soballe, K., E. Hansen, H. Brockstedt-Rasmussen, and C. Bunger, Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. Bone & Joint Journal, 1993. 75(2): p. 270-278.
40.Martínez-Vázquez, F.J., M.V. Cabañas, J.L. Paris, D. Lozano, and M. Vallet-Regí, Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomaterialia, 2015. 15: p. 200-209.
41.Fayyazbakhsh, F., M. Solati-Hashjin, A. Keshtkar, M.A. Shokrgozar, M.M. Dehghan, and B. Larijani, Release behavior and signaling effect of vitamin D3 in layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffold: An in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2017. 158: p. 697-708.
42.Neufurth, M., X. Wang, S. Wang, R. Steffen, M. Ackermann, N.D. Haep, H.C. Schröder, and W.E.G. Müller, 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomaterialia, 2017. 64: p. 377-388.
43.Venkatesan, J., I. Bhatnagar, P. Manivasagan, K.-H. Kang, and S.-K. Kim, Alginate composites for bone tissue engineering: A review. International Journal of Biological Macromolecules, 2015. 72: p. 269-281.
44.García-Gareta, E., M.J. Coathup, and G.W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015. 81: p. 112-121.
45.Yunus Basha, R., S.K. T.S, and M. Doble, Design of biocomposite materials for bone tissue regeneration. Materials Science and Engineering: C, 2015. 57: p. 452-463.
46.Mahmood, S.K., M.Z.A.B. Zakaria, I.S.B.A. Razak, L.M. Yusof, A.Z. Jaji, I. Tijani, and N.I. Hammadi, Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochemistry and Biophysics Reports, 2017. 10: p. 237-251.
47.Valverde, T.M., E.G. Castro, M.H.S. Cardoso, P.A. Martins-Júnior, L.M.O. Souza, P.P. Silva, L.O. Ladeira, and G.T. Kitten, A novel 3D bone-mimetic scaffold composed of collagen/MTA/MWCNT modulates cell migration and osteogenesis. Life Sciences, 2016. 162: p. 115-124.
48.Senn, N., On the healing of aseptic bone cavities by implantation of antiseptic decalcified bone. The American Journal of the Medical Sciences, 1889. 98(3): p. 219-247.
49.Begam, H., S.K. Nandi, B. Kundu, and A. Chanda, Strategies for delivering bone morphogenetic protein for bone healing. Materials Science and Engineering: C, 2017. 70, Part 1: p. 856-869.
50.Yang, X., A. Al Hegy, E.R. Gauthier, and J. Gray-Munro, Influence of mixed organosilane coatings with variable RGD surface densities on the adhesion and proliferation of human osteosarcoma Saos-2 cells to magnesium alloy AZ31. Bioactive Materials, 2017. 2(1): p. 35-43.
51.Jayaraman, P., C. Gandhimathi, J.R. Venugopal, D.L. Becker, S. Ramakrishna, and D.K. Srinivasan, Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Advanced Drug Delivery Reviews, 2015. 94: p. 77-95.
52.Kim, Y.-H. and Y. Tabata, Dual-controlled release system of drugs for bone regeneration. Advanced Drug Delivery Reviews, 2015. 94: p. 28-40.
53.Kerckhofs, G., Y.C. Chai, F.P. Luyten, and L. Geris, Combining microCT-based characterization with empirical modelling as a robust screening approach for the design of optimized CaP-containing scaffolds for progenitor cell-mediated bone formation. Acta Biomaterialia, 2016. 35: p. 330-340.
54.Guillaume, O., M.A. Geven, C.M. Sprecher, V.A. Stadelmann, D.W. Grijpma, T.T. Tang, L. Qin, Y. Lai, M. Alini, J.D. de Bruijn, H. Yuan, R.G. Richards, and D. Eglin, Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomaterialia, 2017. 54: p. 386-398.
55.Farokhi, M., F. Mottaghitalab, M.A. Shokrgozar, K.-L. Ou, C. Mao, and H. Hosseinkhani, Importance of dual delivery systems for bone tissue engineering. Journal of Controlled Release, 2016. 225: p. 152-169.
56.Pilipchuk, S.P., A.B. Plonka, A. Monje, A.D. Taut, A. Lanis, B. Kang, and W.V. Giannobile, Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dental Materials, 2015. 31(4): p. 317-338.
57.Gunnella, F., E. Kunisch, S. Maenz, V. Horbert, L. Xin, J. Mika, J. Borowski, S. Bischoff, H. Schubert, A. Sachse, B. Illerhaus, J. Günster, J. Bossert, K.D. Jandt, F. Plöger, R.W. Kinne, O. Brinkmann, and M. Bungartz, The GDF5 mutant BB-1 enhances the bone formation induced by an injectable, poly(l-lactide-co-glycolide) acid (PLGA) fiber-reinforced, brushite-forming cement in a sheep defect model of lumbar osteopenia. The Spine Journal, 2017.
58.Danoux, C.B.S.S., D.C. Bassett, Z. Othman, A.I. Rodrigues, R.L. Reis, J.E. Barralet, C.A. van Blitterswijk, and P. Habibovic, Elucidating the individual effects of calcium and phosphate ions on hMSCs by using composite materials. Acta Biomaterialia, 2015. 17: p. 1-15.
59.Ginjupalli, K., G.V. Shavi, R.K. Averineni, M. Bhat, N. Udupa, and P. Nagaraja Upadhya, Poly(α-hydroxy acid) based polymers: A review on material and degradation aspects. Polymer Degradation and Stability, 2017. 144: p. 520-535.
60.Kluin, J., H. Talacua, A.I.P.M. Smits, M.Y. Emmert, M.C.P. Brugmans, E.S. Fioretta, P.E. Dijkman, S.H.M. Söntjens, R. Duijvelshoff, S. Dekker, M.W.J.T. Janssen-van den Broek, V. Lintas, A. Vink, S.P. Hoerstrup, H.M. Janssen, P.Y.W. Dankers, F.P.T. Baaijens, and C.V.C. Bouten, In situ heart valve tissue engineering using a bioresorbable elastomeric implant – From material design to 12 months follow-up in sheep. Biomaterials, 2017. 125: p. 101-117.
61.Laycock, B., M. Nikolić, J.M. Colwell, E. Gauthier, P. Halley, S. Bottle, and G. George, Lifetime prediction of biodegradable polymers. Progress in Polymer Science, 2017. 71: p. 144-189.
62.Stratton, S., N.B. Shelke, K. Hoshino, S. Rudraiah, and S.G. Kumbar, Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 2016. 1(2): p. 93-108.
63.Lin, Y., W. Xiao, B.S. Bal, and M.N. Rahaman, Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo. Materials Science and Engineering: C, 2016. 67: p. 440-452.
64.Prabhu, D.B., P. Gopalakrishnan, and K.R. Ravi, Coatings on implants: Study on similarities and differences between the PCL coatings for Mg based lab coupons and final components. Materials & Design, 2017. 135: p. 397-410.
65.Keller, L., A. Regiel-Futyra, M. Gimeno, S. Eap, G. Mendoza, V. Andreu, Q. Wagner, A. Kyzioł, V. Sebastian, G. Stochel, M. Arruebo, and N. Benkirane-Jessel, Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine: Nanotechnology, Biology and Medicine, 2017. 13(7): p. 2231-2240.
66.Ndazi, B.S. and S. Karlsson, Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym. Lett, 2011. 5: p. 119-131.
67.Salerno, A., M. Fernández-Gutiérrez, J. San Román del Barrio, and C. Domingo, Bio-safe fabrication of PLA scaffolds for bone tissue engineering by combining phase separation, porogen leaching and scCO2 drying. The Journal of Supercritical Fluids, 2015. 97: p. 238-246.
68.Carothers, W.H., G. Dorough, and F.v. Natta, Studies of polymerization and ring formation. X. The reversible polymerization of six-membered cyclic esters. Journal of the American Chemical Society, 1932. 54(2): p. 761-772.
69.Ta-I Yang, Po-Liang Lin, Guang-Wei Chang, Yu-Chen Tseng, Zhe-Yang Yu, Charng-Bin Yang, Guo-Chung Dong, Hsu-Wei Fang, A New Class of Biocompatible Tricalcium Phosphate/ Polypropylene Carbonate/Polylactic Acid Nanocomposites with Controlled Flexibility and Biodegradability. Current Nanoscience, 2014. 10.
70.Wang, T., L.C. Chow, S.A. Frukhtbeyn, A.H. Ting, Q. Dong, M. Yang, and J.W. Mitchell, Improve the strength of PLA/HA composite through the use of surface initiated polymerization and phosphonic acid coupling agent. J. Res. Natl. Inst. Stand. Technol., 2011. 116(5): p. 785-796.
71.Farah, S., D.G. Anderson, and R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016. 107: p. 367-392.
72.Zibiao Li, Beng HoonTan, Tingting Lin, Chaobin He, Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Progress in Polymer Science, 2016. 62: p. 22-72.
73.Diaz-Gomez, L., C.A. García-González, J. Wang, F. Yang, S. Aznar-Cervantes, J.L. Cenis, R. Reyes, A. Delgado, C. Évora, A. Concheiro, and C. Alvarez-Lorenzo, Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. International Journal of Pharmaceutics, 2017. 527(1–2): p. 115-125.
74.Iqbal, H., M. Ali, R. Zeeshan, Z. Mutahir, F. Iqbal, M.A.H. Nawaz, L. Shahzadi, A.A. Chaudhry, M. Yar, S. Luan, A.F. Khan, and I.-u. Rehman, Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids and Surfaces B: Biointerfaces, 2017. 160: p. 553-563.
75.Farokhi, M., F. Mottaghitalab, S. Samani, M.A. Shokrgozar, S.C. Kundu, R.L. Reis, Y. Fatahi, and D.L. Kaplan, Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2017.
76.Grünewald, T.A., A. Ogier, J. Akbarzadeh, M. Meischel, H. Peterlik, S. Stanzl-Tschegg, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger, Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant – A scanning small-angle X-ray scattering time study. Acta Biomaterialia, 2016. 31: p. 448-457.
77.Grünewald, T.A., H. Rennhofer, B. Hesse, M. Burghammer, S.E. Stanzl-Tschegg, M. Cotte, J.F. Löffler, A.M. Weinberg, and H.C. Lichtenegger, Magnesium from bioresorbable implants: Distribution and impact on the nano- and mineral structure of bone. Biomaterials, 2016. 76: p. 250-260.
78.Carlos Barreto, Eddy Hansen, Siw Fredriksen, Novel solventless purification of poly(propylene carbonate): Tailoring the comp osition and thermal properties of PPC. Polymer Degradation and Stability, 2012. 97(6).
79.Zou, Q., J. Liao, J. Li, and Y. Li, Evaluation of the osteoconductive potential of poly (propylene carbonate)/nano-hydroxyapatite composites mimicking the osteogenic niche for bone augmentation. Journal of Biomaterials Science, Polymer Edition, 2017. 28(4): p. 350-364.
80.Zhang, S., Z. Ren, X. Sun, H. Li, and S. Yan, Effects of Composition and Melting Time on the Phase Separation of Poly (3-hydroxybutyrate)/Poly (propylene carbonate) Blend Thin Films. Langmuir, 2017. 33(5): p. 1202-1209.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊