跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴璟源
研究生(外文):Jing-Yuan Lai
論文名稱:以鍛燒法自醋酸鋅製備氧化鋅奈米微粒之研究
論文名稱(外文):Manufacture of Zinc Oxide Nanoparticles from Zinc Acetate by Calcination
指導教授:蔡德華
指導教授(外文):Teh-Hua Tsai
口試委員:洪桂彬蘇至善張裕祺
口試日期:2018-07-04
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:127
中文關鍵詞:奈米微粒氧化鋅醋酸鋅鍛燒法
外文關鍵詞:NanoparticlesZinc OxideZinc AcetateCalcination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:766
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鍛燒,或稱煅燒,為對金屬礦物或其它固體材料的一種加熱過程,可以使材料內的某些成分產生熱解離、相變化或藉此脫去其中揮發性之成分。通常此加熱過程之最高溫不會超過材料本身的熔融溫度。
本研究是以鍛燒法製備氧化鋅。實驗以醋酸鋅為前驅物,接著加入不同體積的氫氧化鈉進行沉澱反應,並改變pH值,於固定之進料速度、攪拌速度及溫度條件下,初步合成混合氧化鋅與氫氧化鋅之粉體液。以ICP-OES測其殘留鋅離子濃度值,水洗混合氧化鋅與氫氧化鋅之粉體液並檢測電導度值與pH值,最後分析最佳洗滌次數。
將製備好的氧化鋅與氫氧化鋅粉體乾燥後,研磨至所需之粒徑,再以不同的加熱溫度、持溫時間、升溫速度進行鍛燒。將所燒結出之粉體以動態光散射光譜儀測其粒徑大小、X光繞射分析儀測其晶體結晶程度、掃描式電子顯微鏡觀察其表面型態、能量色散型X射線螢光分析儀分析其粉體表徵元素組成。
經由實驗結果得知找到氧化鋅沉澱的最佳條件,醋酸鋅濃度為1.15 M,調整pH值在12.0左右,氫氧化鈉溶液濃度為4 N,入料流速為5 g/min,攪拌速率為200 rpm,反應溫度為25°C。此條件下能製備出球狀的氧化鋅,流動性較佳,應用較為廣泛。
研究結果顯示,粉體中氧化鋅所佔比例隨著鍛燒溫度上升而上升;鍛燒溫度超過300°C以上氧化鋅所占比例皆超過九成以上,直到鍛燒至650°C時氧化鋅比例達到約99%。然而在鍛燒至650°C時,持溫時間只要0.5 h,升溫速度5°C/min的鍛燒條件下能製備出尺寸均一約10奈米的氧化鋅。
本研究提供後續製備氧化鋅奈米微粒時所需要的條件參數,包括外觀的的掌控,提升結晶強度、氧化鋅所佔的比例,以及如何製備出所需的粒徑與分析粒徑之條件,以利欲製備相關條件者參考。
Calcination, also known as calcining, is a heating process of minerals or other solid materials. It can make some ingredients of the material cause thermal dissociation, phase change or getting rid off volatile ingredients. Usually, the highest temperature of the heating process won’t exceed melting point of the material.
In this study, zinc oxide was produced by calcination. The precursor of the experiment is zinc acetate. Then, adding different volume of Sodium hydroxide to cause precipitation reaction, which can change the pH value at the same time. In the condition of constant feed rate, stirring speed and temperature. The powder-liquid of the mixed zinc oxide and zinc hydroxide can be synthesized preliminary. After that, using ICP-OES to measure the residual zinc ion concentration value. Washing the mixed powder-liquid of zinc oxide and zinc hydroxide and measuring the conductivity, pH value of the powder-liquid. Then, analyzing the best number of washing times.
After drying the prepared zinc oxide and zinc hydroxide powder, ground the powder to the required particle size. Then, calcing the powder with conditions, which including: different temperatures, holding time and heating rate. At last, measuring the particle size and the degree of crystallinity by DLS and XRD. Then, observe the exterior and the composition of elemental by SEM and EDS.
Through the experimental results, the best conditions of the precipitation was found when the concentration of zinc acetate was 1.15 M, pH=12.0, 4 N sodium hydroxide solution, feed rate=5 g/min while the stirring speed rpm=200 and reaction temperature was 25°C. Under these conditions, the spherical zinc oxide powder has produced, which has better drillability that can be used widely.
The results show that the ratio of zinc oxide in the powder and the calcining temperature are in direct proportion. When the calcining temperature is above 300°C, the ratio of zinc oxide in the powder would up to 90% and reach 99% while in 650°C. However, when calcining under the temperature of 650°C, the zinc oxide could be produced formally (about 10 nm) with soak time in 0.5 h and heating rate=5°C/min.
The study provides the necessary conditions for the subsequent preparation of zinc oxide nanoparticles for those in need., including the control of the appearance, the increase of the crystal strength, the ratio of zinc oxide, the methods of producing the required particle size and the conditions of analyzing particle size.
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究架構 4
第二章 文獻回顧與應用原理 5
2.1 鋅材料簡介 5
2.1.1 鋅原料及鋅化合物基本性質 5
2.1.2 氧化鋅的基本性質 7
2.1.3 氧化鋅的結構 8
2.1.4 氧化鋅的特性及應用 11
2.2 氧化鋅與氫氧化鋅之製備方法與文獻回顧 16
2.2.1 氧化鋅的製備方法 16
2.2.1.1 直接沉澱法 21
2.2.1.2 水溶液法 21
2.2.1.3 水熱法 21
2.2.1.4 化學氣相沉積法 22
2.2.2 氫氧化鋅的製備方法 23
 2.3 奈米材料之理論基礎與文獻回顧 26
2.3.1 奈米尺寸 26
2.3.2 奈米材料之特性 26
2.3.2.1 小尺寸效應(Small size effect) 27
2.3.2.2 表面效應(Surface effect) 28
2.3.2.3 量子侷限效應(Quantum confinement effect) 29
2.3.2.4 宏觀量子穿隧效應(Quantum tunneling effect) 30
2.4 燒結機制 31
2.5 粒徑分析方法 32
第三章 實驗藥品、設備與方法 33
3.1 實驗藥品 33
3.2 實驗設備 35
3.3 實驗方法 39
3.3.1 醋酸鋅純度與濃度之確認 39
3.3.2 醋酸鋅為基底(小量)合成氧化鋅 39
3.3.2.1 水洗氧化鋅 39
3.3.2.2 鍛燒製備氧化鋅 40
3.3.2.3 改變鍛燒溫度 40
3.3.3 改變醋酸鋅濃度 42
3.3.4 醋酸鋅為基底(大量)合成氧化鋅 42
3.3.4.1 水洗次數的選擇 42
3.3.4.2 鍛燒製備氧化鋅 43
3.3.4.3 改變持溫時間與升溫速度 43
第四章 結果與討論 45
4.1 氧化鋅合成(小量)之製備 45
4.2 水洗氧化鋅 47
4.3 鍛燒製備氧化鋅 49
4.3.1 改變鍛燒溫度 50
4.3.2 結晶特性分析 50
4.3.3 結晶尺寸分析 53
4.3.4 結晶表面型貌分析 69
4.4 改變醋酸鋅濃度 86
4.5 最佳製備氧化鋅條件 87
4.6 放大產量後氧化鋅水洗次數之選擇 88
4.7 改變鍛燒持溫時間與升溫速度 91
4.7.1 結晶特性分析 92
4.7.2 結晶尺寸分析 98
4.7.3 結晶表面型貌分析 112
第五章 結論 118
參考文獻 120
附錄 125
符號說明 127
[1]Richard, F., “The character of physical law”, Modern library, USA, 1965.
[2]Kubo, R., “Quantum confinement theory”, Physics, Japan, 1962.
[3]馬振基,"奈米材料科技原理與應用",全華科技圖書,台北,2003。
[4]Hone, J., A. T. Johnson, B.,Batlogg, Z. Benes and J. E. Fischer, “Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes”, Science, 289, 1730-1733, 2000.
[5]Choi, W. B., “high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett. 75, 3129-3131, 1999.
[6]高濂、李蔚,"奈米陶瓷",五南圖書,台北,2003。
[7]郭浩中、賴芳儀、郭守義,"LED原理與應用",五南圖書,台北,2009。
[8]郭旭祥,"ZnO:Al薄膜氣體感測器之研究",碩士論文,國立成功大學材料科學及工程學系,1999。
[9]Yang, P., H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties”, Adv. Funct. Mater., 12, 313-323, 2002.
[10]Ng, H. T., J. Han, T. Yamada and P. Ng, “Direct Integration of Metal Oxide Nanowire in Vertical Field-Effect Transistor”, Nano Lett, 4, 651-657, 2004.
[11]Kind, H., H. Yan, B. Messer, M. Law and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches”, Adv. Mater., 14(2), 158-160, 2002.
[12]Hutson, A. R., “Hall effect studies of doped zinc oxide single crystals”, Phys. Rev., 108, 222-228, 1957.
[13]化學品全球調和制度,https://ghs.osha.gov.tw/CHT/intro/search.aspx,勞動部職業安全衛生署 安全衛生技術中心。
[14]Burhop, E. H. S., “The Auger Effect and other Radiationless Transitions”, New York Cambridge University, 2-3,1952.
[15]王貞雲,"以低溫水溶液法合成氧化鋅奈米線之研究",碩士論文,國立台北科技大學材料科學與工程研究所,2007。
[16]Herbert, B., “Precipitation-Dissolution of Inorganic Species”, Texas A&M University, 14-19, 2014.
[17]Sawada, H., R. Wang and A.W. Sleight, “Powder Diffraction File:Joint Committee on Powder Diffraction Standards”, J. Solid State Chem., 122, 148-150, 1996.
[18]Laudise, R. A. and A. A. Ballman, “Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide”, J. Phys. Chem., 64(5), 688-691, 1960.
[19]Li, W. J., E. W. Shi, W. Z. Zhong and Z. W. Yin, “Growth mechanism and growth habit of oxide crystals”, J. Crystal Growth, 203, 186-196, 1999.
[20]Meyer, B. and D. Marx, “Density-functional study of the structure and stability of ZnO surfaces”, Phys. Rev. B, 67, 163-173, 2003.
[21]史光國編著,"半導體發光二極體及固態照明",全華科技圖書公司,台北, 2005。
[22]Hu, W. S., Z. G., Liu, R. X., Wu, Y. F., Chen, W. Ji, T., Yu, D., Feng, “Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al2O3 and its ultrahigh frequency resonance”, Appl. Phys. Lett., 71, 548-551, 1997.
[23]Ezhilvalavan, S. and T. R. N. Kutty, “High‐frequency capacitance resonance of ZnO‐based varistor ceramics”, Appl. Phys. Lett., 69, 3540-3543, 1996.
[24]楊明輝,"金屬氧化物透明導電材料的基本原理",工業材料雜誌,179期, 2001。
[25]Comini, E., G. Faglia, G. Sberveglieri, Z. Pan and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Appl. Phys. Lett., 81, 1869-1872, 2002.
[26]Joseph, M., H. Tabata and T. Kawai, “p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping”, Jpn. J. Appl. Phys., 38, 2505-2508, 1999.
[27]Kind, H., H. Yan and B. Messer, “Nanowire Ultraviolet Photodetectors and Optical Switches”, Angew. Chem. Int. Ed., 41, 2405-2407, 2002.
[28]Blus, L., “Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory”, J. Phys. Chem., 90, 2555-2560, 1986.
[29]Abdullah, M., I. W. Lenggoro and K. Okuyama, “In situ Synthesis of Polymer Nanocomposite Electrolytes Emitting a High Luminescence With a Tunable Wavelength”, J. Phys Chem. B, 107, 1957-1961, 2003.
[30]Bahnemann, D. W., C. Kormann and M. R. Hoffmann, “Preparation and Characterization of Quantum Size Oxide:a Detailed Spectroscopic Study”, J. Phys. Chem., 91, 3789-3798, 1987.
[31]Oskam, G., Z. Hu, R. L. Penn, N. Pesika and P. C. Searson, “Coarsening of Metal Oxide Nanoparticles”, Phys. Rev. E, 66, 651-654, 2002.
[32]Wong, E. M., J. E. Bonevich and P. C. Searson, “Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions”, J. Phys. Chem. B, 102, 7770-7775, 1998.
[33]Wong, E. M., P. G. Hoertz, C. J., Liang, B. M. Shi, G. J. Meyer and P. C. Searson, “Influence of Organic Capping Ligands on the Growth Kinetics of ZnO Nanoparticles”, Lanmuir, 17, 8362-8367, 2001.
[34]Spanhel, L. and M. A. Anderson, “Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated ZnO Colloids”, J. Am. Chem. Soc., 113, 2826-2833, 1991.
[35]Chen, D., X. Jiao and G. Cheng, “Hydrothermal Synthesis of Zinc Oxide Powders with Different Morphologies”, Solid state communication, 113, 363-366, 2000.
[36]Taubert, A. and G. Wegner, “Formation of Uniform and Monodisperse Zincite Crystals in the Presence of Soluble Starch”, J. Mater. Chem., 12, 805-807, 2002.
[37]Ali, H. A., A. A. Iliadis, P. Kofinas and U. Lee, “Properties of Self-assembled ZnO Nanostructures”, Solid-State Electronics, 46, 1639-1642, 2002.
[38]Wu, R., J. Wu, C. Xie, J. Zhang and A. Wang, “Morphological Characteristic of Zn/ZnO Nanopowders and the Optical Properties”, Materials Science and Engineering, A328, 196-200, 2002.
[39]Li, J. Y., X. L. Chen, H. Li, M. He and Z. Y. Qiao, “Fabrication of Zinc Oxide Nanorods”, Journal of Crystal Growth, 233, 5-7, 2001.
[40]Lao, J. Y., J. Y. Huang, D. Z. Wang and Z. F. Ren, “ZnO Nanobridges and Nanonails”, Nano Letters, 3, 235-238, 2003.
[41]Feldmann, C., “Polyol-Mediated Synthesis of Nanoscale Functional Materials”, Advanced Functional Materials, 13, 101-107, 2003.
[42]Dubey, B. and N. Tiwari, “Powder Diffraction File:Joint Committee on Powder Diffraction Standards” , Bull. Chem. Soc. Jpn., 65, 495-500, 1992.
[43]Reichle, R. A., K. G. McCurdy and L. G. Hepler, Hepler, “Zinc hydroxide:solubility product and hydroxy-complex stability constants from 12.5~75°C”, Can. J. Chem., 53, 3841-3845, 1975.
[44]Li, W. J., E. W. Shi and W. Z. Zhong, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203, 186-196, 1999.
[45]Guzmán-Carrillo, H. R., “Facile control of ZnO nanostructures by varying molar concentration of zinc acetate”, Materials Research Bulletin, 90, 138-144, 2017.
[46]吳家增,"奈米科技教材",國立清華大學奈米工程與微系統研究所,2012。
[47]張毓舜,"下水污泥焚化灰渣燒結特性之研究",碩士論文,國立中央大學環境工程研究所,1999。
[48]陳仕哲,"以鍛燒法自硫酸鎳製備氧化鎳之研究",碩士論文,國立台北科技大學化學工程研究所,2017。
[49]Hayder, J. Al-Asedy, “Structure, morphology and photoluminescence attributes of Al/Ga co-doped ZnO nanofilms: Role of annealing time”, Materials Research Bulletin, 97, 71-80, 2018.
[50]Astinchap, B., R. Moradian and M. N. Tekyeh, “Investigating the optical properties of synthesized ZnO nanostructures by sol-gel: The role of zinc precursors and annealing time”, Optik, 127, 9871-9877, 2016.
[51]Wang, Jing, Ruosong Chen, Yi Xia, Guifang Wang, Hongyuan Zhao, Lan Xiang and Sridhar Komarneni, “Cost-effective large-scale synthesis of oxygen-defective ZnO photocatalyst with superior activities under UV and visible light”, Ceramics International, 43, 1870–1879, 2017.
[52]張立德、牟季美,"奈米材料和奈米結構",滄海書局,台中,2002。
[53]陳志明,"氧化鋅摻雜氧化銦P型氮化鎵歐姆接觸特性之研究",碩士論文,國立台北科技大學光電工程研究所,2006。
[54]徐偉勝,"銦鎵共摻雜氧化鋅透明導電膜之研製",碩士論文,國立台北科技大學光電工程研究所,2008。
[55]徐志宗,"氧化鋅奈米結晶之製備與分散",碩士論文,國立中央大學化學工程與材料工程學研究所,2004。
[56]周涴盈,"以溶膠凝膠法製備氧化鋅鋁透明導電薄膜及光電特性研究",國立台北科技大學化學工程研究所,2013。
[57]李紹睿,"水溶液法選擇性成長一維氧化鋅奈米陣列",國立交通大學材料科學與工程研究所,2006。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊