跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡承成
研究生(外文):Tsai Cheng-Cheng
論文名稱(外文):Theoretical Study on the Stability of Neutral and Anionic Noble-Gas Molecules and the Prediction of NEXAFS Spectrum of Small Organic Molecules
指導教授:胡維平
指導教授(外文):Hu Wei-Ping
口試委員:魏台輝李進榮李錫隆劉振霖胡維平
口試委員(外文):Wei, Tai-HueiLee, Chin-RongLee, Shyi-LongChen-Li, LiuWei-Ping, Hu
口試日期:2019-07-19
學位類別:博士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:200
中文關鍵詞:鈍氣陰離子內層電子激發光譜中性鈍氣分子
外文關鍵詞:Noble gas anionNEXAFS spectrumNoble gas moleculeTime-dependent density functional theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本博士論文共分四章,第一章我們設計了不含滷素元素的穩定鈍氣陰離子,第二章我們設計了穩定的三重態中性鈍氣分子FNgBCO,第三章我們使用TDDFT方法計算計算含有π鍵與芳香性的有機小分子carbon K-edge NEXAFS光譜,並與實驗光譜比較,分析TDDFT方法可靠性及瞭解光譜assignment與結構的對應關係,第四章我們使用TDDFT方法計算amide系列分子的carbon與nitrogen K-edge NEXAFS光譜,並分析分子結構如何影響光譜。
第一章中我們設計了OBONgO、NCONgO、OCNNgO、HBNNgO、FBNNgO以及FNgNBO鈍氣陰離子(Ng :He、Ar、Kr與Xe),當鈍氣原子為Ar、Kr與Xe時,鈍氣陰離子的線性分解能量至少都大於23.0 kcal/mol,彎曲分解能障至少都大於15.0,S-T gap能量都大於40.0 kca/mol,Ar的鈍氣陰離子較容易發生inter-system crossing,另外由電荷分析知道OBONgO、NCONgO、OCNNgO、HBNNgO、FBNNgO具備明顯ion-dipole complex特徵,但是,FNgNBO分子則比較不具備強烈的ion-dipole complex特徵。
第二章我們設計了穩定的三重態中性鈍氣分子FNgBCO(Ng :Kr與Xe),FNgBCO發生線性分解至少要吸熱20.3 kcal/mol、發生彎曲分解反應需克服16.1 kcal/mol的反應能障,三重態FNgBCO比單重態FNgBCO能量高10.0 kcal/mol,另外考慮FNgBCO可能變成FNgCBO而分解,計算結果顯示FNgCBO進行線性分解需要吸熱至少14.0kcal/mol,彎曲分解能障至少都大於25.0kca/mol,因此我們認為在過去鈍氣分子被發現的溫度下有機會觀察到FNgBCO分子。
第三章我們使用TD-B3LYP與TD-LB94 方法搭配6-31+G(d,p) 、aug-cc-pVTZ基底函數計算乙烯、乙炔、苯環、苯環的衍生物、萘、吡啶、嘧啶與嘌呤的carbon K-edge NEXAFS光譜,討論計算光譜與實驗光譜的吻合情況、assignment並分析結構對於光譜的影響,使用TD-B3LYP方法雖然在激發能量上需要平移約10.0 eV,但是在光譜吸收峰的相對強度上預測的不錯,基底函數選擇不見得越大越好,TD-B3LYP方法搭配6-31+G(d,p) 基底函數適合做為提供實驗光譜assignmnet,苯環的主要吸收位於285.0 eV而純雙鍵與三鍵分子的主要吸收位於285.7 eV,取代基的種類會使主要吸收峰分裂,光譜受取代基種類影響較為明顯, 增加取代基數目只影響光譜強度,增加結構上苯環的個數並不影響主要吸收能量,從吡啶、嘧啶與嘌呤結果顯示因為不同的鍵結形式的碳原子種類變多導致觀察到的主要吸收分佈變寬。
第四章我們使用TD-B3LYP方法搭配Pople-type基底函數6-31+G(d,p) 計算一系列amide分子,詳細的探討其分子結構變化對carbon 與nitrogen K-edge NEXAFS光譜的影響,amide系列分子於carbon K-edge 光譜中288.0 eV附近都有一個主要吸收峰對應激發peptide鍵結上的C原子1s電子至peptide鍵結上的π*軌域,而在nitrogen K-edge光譜中都有402.0 eV的主要吸收對應激發peptide鍵結上的N原子1s電子至peptide鍵結上的π*軌域,如果分子結構混有其他官能基則NEXAFS光譜也會顯示對應的特徵吸收,不同的peptide鍵結方式也會在光譜上反應出對應的特徵吸收峰,增加鍵結sp3的甲基結構會影響carbon K-edge與nitrogen K-edge光譜在 289.0 eV以及402.0 eV區域的主要吸收。

This thesis consists of four chapters. In chapter one, we discover the new type stable noble gas containing anions without halogens. In chapter two, we design the stable triplet neutral noble gas containing molecule FNgBCO. In chapter three, we calculate carbon K-edge NEXAFS specta of small organic moleules which contain double bond and aromatic rings and understand the infuence on spectrum by structure. In chapter four, we calculated the carbon and nitrogen K-edge NEXAFS spectra for amide seires molecules with TDDFT method and analyze the corresponding between structures and spectra.
In chapter one, we we find the new type stable noble gas containing anions OBONgO、NCONgO、OCNNgO、HBNNgO、FBNNgO and FNgNBOwhere Ng were argon, krypton and Xenon. The linear dissociaiotn energies, barriers of bending dissociation and S-T gap of these noble gas containing anions are more than 23.0, 15.0 and 40.0 kcal/mol respectively. The noble gas containing anions for argon may occure inter-system crossing. By the charge analysis, The OBONgO, NCONgO, OCNNgO, HBNNgO, FBNNgOwere more like ion-dipole complex, but FNgNBO does not possess so much properties of ion-dipole complex.
In chapter two, we find the stable triplet neutral noble gas containing molecule FNgBCO where Ng were krypton and Xenon. The linear dissociaiotn energies, barriers of bending dissociation and S-T gap of FNgBCO were larger than 20.3, 15.0 and 16.1 kcal/mol resprectively. The FNgBCO can convert to FNgCBO molecule, but our calculations also showe FNgCBO are stable enougth. In summary, the triplet neutral noble gas containing molecule FNgBCO may be observed at cryogenic conditions.
In chapter three, we calculate the carbon K-edge NEXAFS spectra by TDDFT method with B3LYP and LB94 fuctionals for ethyne, ethylene, benzene, benzene derivative, naphthalene, pyridine, pyrimidine and purine moleules. For using TD-B3LYP/6-31+G(d,p) method, although the calculated spectra are needed to shift about 10.0 eV, the corresponding between calculated and experimental spectra are much better. The main excitagtion enregy for 1s →π* transition of containing benzene molecules is located around 285.0 eV which is slightly lower than the main excitagtion enregy of pure doouble bond containing molecule (~ 287.0 eV). The specie of substituent on benzene affect the shifting of excitation energy of main transition but the number of substituent shows influence only on intensity. Increasing the number of benzene rings can not chage the spectrum. From the assignment of pyridne, pyrimidine and purine, the main absorption becomes broad due to the existence of more different carbon atoms in the structure.
In chapter four, we calculate the carbon, nitrogen K-edge NEXAFS spectra for amide series molecules. For all amide molecules, the main excitation energies locate around 288.0 and 402.0 eV respectively which correspond to the transition C :1s → peptide π* and N:1s → peptide π*. If the moleule contains both benzene and peptide strctures at the same time, the spectra also showe specific absorption peaks for both structures. The bonding methyl goups also affect the absorption peaks in the region of 289.0 and 402.0 eV.
1.1 Introduction 2
1.2計算方法 5
1.3結果與討論 7
1.4 結論 19
第二章Stable Triplet State Noble Gas Compound FNgBCO (Ng : Kr and Xe) 54
2.1 Introduction 55
2.2計算方法 57
2.3結果與討論 59
2.4結論 63
第三章 Prediction of Near Edge X-ray Absorption Fine Structure Spectra for Small Organic Molecules 80
3.1 Introduction 81
3.2 計算方法 91
3.3結果與討論 94
3.4 結論 111
第四章 Prediction of Near Edge X-ray Absorption Fine Structure Spectra for Amide Molecules 143
4.1 Introduction 144
4.2 計算方法 147
4.3結果與討論 148
4.3結論 162


Chapter 1
(1)Bartlett, N.Xenon Hexafluoroplatinate (V) Xe+[PtF6]− Proc. Chem. Soc. 1962, 218.
(2)Pettersson, M.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Chem. Phys. 1998, 109, 618.
(3)Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Rasanen, M. Nature 2000, 406, 874.
(4)Pettersson, M.; Khriachtchev, L.; Lignell, A.; Räsänen, M.; Bihary, Z.; Gerber, R. J. Chem. Phys. 2002, 116, 2508.
(5)Khriachtchev, L.; Räsänen, M.; Gerber, R. B. Acc. Chem. Res.2008, 42, 183.
(6)Arppe, T.; Khriachtchev, L.; Lignell, A.; Domanskaya, A. V.; Räsänen, M. Inorg. Chem.2012, 51, 4398.
(7)Khriachtchev, L.; Domanskaya, A.; Lundell, J.; Akimov, A.; Räsänen, M.; Misochko, E. J. Phys. Chem. A 2010, 114, 4181.
(8)Arppe, T.; Khriachtchev, L.; Lignell, A.; Domanskaya, A. V.; Räsänen, M. Inorg. Chem.2012, 51, 4398.
(9)Zhu, C.; Räsänen, M.; Khriachtchev, L. J. Chem. Phys. 2015, 143, 074306.
(10) Zhu, C.; Räsänen, M.; Khriachtchev, L. J. Chem. Phys. 2015, 143, 244319.
(11) Duarte, L.; Khriachtchev, L. RSC Adv. 2017, 7, 813.
(12) Willmann, K.; Vent-Schmidt, T.; Räsänen, M.; Riedel, S.; Khriachtchev, L. RSC Adv. 2015, 5, 35783.
(13)Duarte, L.; Khriachtchev, L. Sci. Rep. 2017, 7.
(14) Turner, J. J.; Burdett, J. K.; Perutz, R. N.; Poliakoff, M. In Photochemistry–6; Pergamon: 1977, p 271.
(15)Grills, D. C.; Sun, X. Z.; Childs, G. I.; George, M. W. J. Phys. Chem. A 2000, 104, 4300.
(16)Seppelt, K. Z. Anorg. Allg. Chem. 2003, 629, 2427.
(17)Hu, W.-P.; Huang, C.-H. J. Am. Chem. Soc. 2001, 123, 2340.
(18)Liang, B.; Andrews, L.; Li, J.; Bursten, B. E. Inorg. Chem.2004, 43, 882.
(19)Lin, T.-Y.; Hsu, J.-B.; Hu, W.-P. Chem. Phys. Lett. 2005, 402, 514.
(20)Li, T.-H.; Mou, C.-H.; Chen, H.-R.; Hu, W.-P. J. Am. Chem. Soc. 2005, 127, 9241.
(21)Liu, Y.-L.; Chang, Y.-H.; Li, T.-H.; Chen, H.-R.; Hu, W.-P. Chem. Phys. Lett. 2007, 439, 14.
(22)Sun, Y.-L.; Hong, J.-T.; Hu, W.-P. J. Phys. Chem. A 2010, 114, 9359.
(23)Peng, C.-Y.; Yang, C.-Y.; Sun, Y.-L.; Hu, W.-P. J. Chem. Phys. 2012, 137, 194303.
(24)Chen, J.-L.; Yang, C.-Y.; Lin, H.-J.; Hu, W.-P. Phys. Chem. Chem. Phys. 2013, 15, 9701.
(25)Li, T.-H.; Mou, C.-H.; Chen, H.-R.; Hu, W.-P. J. Am. Chem. Soc. 2005, 127, 9241.
(26)Liu, Y.-L.; Chang, Y.-H.; Li, T.-H.; Chen, H.-R.; Hu, W.-P. Chem. Phys. Lett. 2007, 439, 14.
(27)Sun, Y.-L.; Hong, J.-T.; Hu, W.-P. J. Phys. Chem. A 2010, 114, 9359.
(28)Borocci, S.; Bronzolino, N.; Grandinetti, F. Chem. Eur. J.2006, 12, 5033.
(29)Antoniotti, P.; Borocci, S.; Bronzolino, N.; Cecchi, P.; Grandinetti, F. J. Phys. Chem. A 2007, 111, 10144.
(30)Borocci, S.; Bronzolino, N.; Giordani, M.; Grandinetti, F. J. Phys. Chem. A 2010, 114, 7382.
(31)Manna, D.; Ghosh, A.; Ghanty, T. K. Chem. Eur. J.2015, 21, 8290.
(32)Ghosh, A.; Manna, D.; Ghanty, T. K. Phys. Chem. Chem. Phys. 2016, 18, 12289.
(33)Ghosh, A.; Dey, S.; Manna, D.; Ghanty, T. K. J. Phys. Chem. A 2015, 119, 5732.
(34)Vent‐Schmidt, T.; Goettel, J. T.; Schrobilgen, G. J.; Riedel, S. Chem. Eur. J.2015, 21, 11244.
(35) Oettel, J.T., V.G. Haensch, and G.J. Schrobilgen, J. Am. Chem. Soc. 2017. 139, 8725.
(36)Liu, Z.; Botana, J.; Hermann, A.; Valdez, S.; Zurek, E.; Yan, D.; Lin, H.-q.; Miao, M.-s.,. Nature communications 2018, 9 (1), 951.
(37)Purvis III, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
(38)Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275.
(39)Dunning Jr, T. H.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244.
(40)Dunning Jr, T. H. J. Chem. Phys. 1989, 90, 1007.
(41)Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.
(42)Fukui, K. Acc. Chem. Res.1981, 14, 363.
(43)Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361.
(44)Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Inc, Wallingford CT Google Scholar 2013.
(45)Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 242.
(46)Lai, T.-Y.; Yang, C.-Y.; Lin, H.-J.; Yang, C.-Y.; Hu, W.-P. J. Chem. Phys. 2011, 134, 244110.
Chapter 2
1.Khriachtchev, L.; Pettersson, M.; Lundell, J.; Tanskanen, H.; Kiviniemi, T.; Runeberg, N.; Räsänen, M., A neutral xenon-containing radical, HXeO. J. Am. Chem. Soc. 2003, 125 (6), 1454-1455.
2.Lundell, J.; Khriachtchev, L.; Pettersson, M.; Räsänen, M., Formation and characterization of neutral krypton and xenon hydrides in low-temperature matrices. Low Temp. Phys. 2000, 26 (9), 680-690.
3.Khriachtchev, L.; Tanskanen, H.; Pettersson, M.; Räsänen, M.; Ahokas, J.; Kunttu, H.; Feldman, V., On photochemistry of water in solid Xe: Thermal and light-induced decomposition of HXeOH and HXeH and formation of H 2 O 2. J. Chem. Phys. 2002, 116 (13), 5649-5656.
4.Pettersson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M., A chemical compound formed from water and xenon: HXeOH. J. Am. Chem. Soc. 1999, 121 (50), 11904-11905.
5.Manna, D.; Ghosh, A.; Ghanty, T. K., Prediction of a Neutral Noble Gas Compound in the Triplet State. Chem.: Eur. J. 2015, 21 (22), 8290-8296.
6.Douglas, A.; Jones, W., THE b 1Σ+–X 3Σ− BAND SYSTEM OF NF. Canadian Journal of Physics 1966, 44 (10), 2251-2258.
7.Colin, R.; Devillers, J.; Prevot, F., The b1Σ+-X3Σ− band system of PF. J. Mol. Spectrosc 1972, 44 (2), 230-235.
8.Li, J.; Bursten, B. E.; Liang, B.; Andrews, L., Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices. Science 2002, 295 (5563), 2242-2245.
9.Andrews, L.; Liang, B.; Li, J.; Bursten, B. E., Noble Gas− Actinide Complexes of the CUO Molecule with Multiple Ar, Kr, and Xe Atoms in Noble-Gas Matrices. J. Am. Chem. Soc. 2003, 125 (10), 3126-3139.
10.Liang, B.; Andrews, L.; Li, J.; Bursten, B. E., On the noble-gas-induced intersystem crossing for the CUO molecule: experimental and theoretical investigations of CUO (Ng) n (Ng= Ar, Kr, Xe; n= 1, 2, 3, 4) complexes in solid neon. Inorg. Chem. 2004, 43 (3), 882-894.
11.Zhao, Y.; Gong, Y.; Chen, M.; Zhou, M., Noble Gas− Transition-Metal Complexes: Coordination of VO2 and VO4 by Ar and Xe Atoms in Solid Noble Gas Matrixes.J. Phys. Chem. A 2006, 110 (5), 1845-1849.
12. Zhou, M.; Wang, Z. X.; von Ragué Schleyer, P.; Xu, Q., Experimental and theoretical characterization of a triplet boron carbonyl compound: BBCO. ChemPhysChem 2003, 4 (7), 763-766.
13.Frisch, M. J.; Head-Gordon, M.; Pople, J. A., A direct MP2 gradient method. Chemical Physics Letters 1990, 166 (3), 275-280.
14.Dunning Jr, T. H.; Peterson, K. A.; Wilson, A. K., Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 2001, 114 (21), 9244-9253.
15.Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M., Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 2003, 119 (21), 11113-11123.
16.Purvis III, G. D.; Bartlett, R. J., A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76 (4), 1910-1918.
17.Foster, J. P.; Weinhold, F., Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102 (24), 7211-7218.
18.Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
Chapter 3
1.Stöhr, J., NEXAFS spectroscopy. Springer Science & Business Media: 2013; Vol. 25.
2.Hähner, G., Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids. Chem. Soc. Rev. 2006, 35 (12), 1244-1255.
3.Guttmann, P.; Bittencourt, C., Overview of nanoscale NEXAFS performed with soft X-ray microscopes. Beilstein J. Nanotechnol. 2015, 6 (1), 595-604.
4.Dhez, O.; Ade, H.; Urquhart, S., Calibrated NEXAFS spectra of some common polymers. J. Electron. Spectros. Relat. Phenomena.2003, 128 (1), 85-96.
5.Fonda, L., Multiple-scattering theory of X-ray absorption: a review. J. Phys. Condens. Matter. 1992, 4 (43), 8269.
6.Sheehy, J.; Gil, T.; Winstead, C.; Farren, R.; Langhoff, P., Correlation of molecular valence‐and K‐shell photoionization resonances with bond lengths. J. Chem. Phys. 1989, 91 (3), 1796-1812.
7.Ziegler, T.; Rauk, A.; Baerends, E. J., On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor. Chim. Acta. 1977, 43 (3), 261-271.
8.Triguero, L.; Pettersson, L.; Ågren, H., Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B. 1998, 58 (12), 8097.
9.Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G., Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chem. Phys. Lett. 1994, 222 (1-2), 75-81.
10.Runge, E.; Gross, E. K., Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52 (12), 997.
11.Gross, E.; Dobson, J.; Petersilka, M., Density functional theory of time-dependent phenomena. In Density functional theory II, Springer: 1996; pp 81-172.
12.Pun, C. D., Recent advances in density functional methods. World Scientific: 1995; Vol. 1.
13.Hirata, S.; Head-Gordon, M., Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314 (3-4), 291-299.
14.Besley, N. A.; Asmuruf, F. A., Time-dependent density functional theory calculations of the spectroscopy of core electrons. Phys Chem Chem Phys 2010, 12 (38), 12024-39.
15.Besley, N. A.; Peach, M. J.; Tozer, D. J., Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys. 2009, 11 (44), 10350-10358.
16.Harbach, P. H.; Wormit, M.; Dreuw, A., The third-order algebraic diagrammatic construction method (ADC (3)) for the polarization propagator for closed-shell molecules: Efficient implementation and benchmarking. J. Chem. Phys. 2014, 141 (6), 064113.
17.Wenzel, J.; Holzer, A.; Wormit, M.; Dreuw, A., Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states. J. Chem. Phys. 2015, 142 (21), 214104.
18.Coriani, S.; Koch, H., Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. AIP Publishing: 2015.
19.Coriani, S.; Koch, H., Erratum:“Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework”[J. Chem. Phys. 143, 181103 (2015)]. J. Chem. Phys. 2016, 145 (14), 149901.
20.Alagia, M.; Bodo, E.; Decleva, P.; Falcinelli, S.; Ponzi, A.; Richter, R.; Stranges, S., The soft X-ray absorption spectrum of the allyl free radical. Phys. Chem. Chem. Phys. 2013, 15 (4), 1310-1318.
21.Hitchcock, A.; Brion, C., Carbon K-shell excitation of C2H2, C2H4, C2H6 and C6H6 by 2.5 keV electron impact. J. Electron. Spectros. Relat. Phenomena.1977, 10 (3), 317-330.
22.McLaren, R.; Clark, S.; Ishii, I.; Hitchcock, A., Absolute oscillator strengths from K-shell electron-energy-loss spectra of the fluoroethenes and 1, 3-perfluorobutadiene. Physical Review A 1987, 36 (4), 1683.
23.Hitchcock, A.; Newbury, D.; Ishii, I.; Stöhr, J.; Horsley, J.; Redwing, R.; Johnson, A.; Sette, F., Carbon K‐shell excitation of gaseous and condensed cyclic hydrocarbons: C3H6, C4H8, C5H8, C5H10, C6H10, C6H12, and C8H8. J. Chem. Phys. 1986, 85 (9), 4849-4862.
24.Hitchcock, A.; Fischer, P.; Gedanken, A.; Robin, M., Antibonding. sigma.* valence MOs in the inner-shell and outer-shell spectra of the fluorobenzenes. Journal of Physical Chemistry 1987, 91 (3), 531-540.
25.Robin, M.; Ishii, I.; McLaren, R.; Hitchcock, A., Fluorination effects on the inner-shell spectra of unsaturated molecules. J. Electron. Spectros. Relat. Phenomena.1988, 47, 53-92.
26.Turci, C. C.; Urquhart, S. G.; Hitchcock, A. P., Inner-shell excitation spectroscopy of aniline, nitrobenzene, and nitroanilines. Can. J. Chem. 1996, 74 (6), 851-869.
27.Rühl, E.; Wen, A.; Hitchcock, A., Inner-shell excitation of η5-C5H5Co (CO) 2 and related compounds studied by gas phase electron energy loss spectroscopy. J. Electron. Spectros. Relat. Phenomena.1991, 57 (2), 137-164.
28.Plashkevych, O.; Yang, L.; Vahtras, O.; Ågren, H.; Petterson, L. G., Substituted benzenes as building blocks in near-edge X-ray absorption spectra. Chem. Phys. 1997, 222 (2-3), 125-137.
29.Bolognesi, P.; O’Keeffe, P.; Ovcharenko, Y.; Coreno, M.; Avaldi, L.; Feyer, V.; Plekan, O.; Prince, K.; Zhang, W.; Carravetta, V., Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory. J. Chem. Phys. 2010, 133 (3), 034302.
30.Lin, Y.-S.; Lin, H.-R.; Liu, W.-L.; Lee, Y. T.; Tseng, C.-M.; Ni, C.-K.; Liu, C.-L.; Tsai, C.-C.; Chen, J.-L.; Hu, W.-P., Measurement and prediction of the NEXAFS spectra of pyrimidine and purine and the dissociation following the core excitation. Chem. Phys. Lett. 2015, 636, 146-153.
31.Dill, J. D.; Pople, J. A., Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 1975, 62 (7), 2921-2923.
32.Van Leeuwen, R.; Baerends, E., Exchange-correlation potential with correct asymptotic behavior. Physical Review A 1994, 49 (4), 2421.
33.Woon, D. E.; Dunning Jr, T. H., Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98 (2), 1358-1371.
34.Woon, D. E.; Dunning Jr, T. H., Gaussian basis sets for use in correlated molecular calculations. V. Core‐valence basis sets for boron through neon. J. Chem. Phys. 1995, 103 (11), 4572-4585.
35.Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
36.Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X., Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics 2015, 113 (2), 184-215.
37. Tsuneda, T.; Song, J.-W.; Suzuki, S.; Hirao, K., On Koopmans’ theorem in density functional theory. J. Chem. Phys. 2010, 133 (17), 174101.
38.Cavigliasso, G.; Chong, D. P., Accurate density-functional calculation of core-electron binding energies by a total-energy difference approach. J. Chem. Phys. 1999, 111 (21), 9485-9492.
39.Stener, M.; Fronzoni, G.; de Simone, M. d., Time dependent density functional theory of core electrons excitations. Chem. Phys. Lett. 2003, 373 (1-2), 115-123.
40.Imamura, Y.; Otsuka, T.; Nakai, H., Description of core excitations by time‐dependent density functional theory with local density approximation, generalized gradient approximation, meta‐generalized gradient approximation, and hybrid functionals. J. Comput. Chem. 2007, 28 (12), 2067-2074.
41. Nakata, A.; Imamura, Y.; Nakai, H., Hybrid exchange-correlation functional for core, valence, and Rydberg excitations: Core-valence-Rydberg B3LYP. J. Chem. Phys.2006, 125 (6), 064109.
42.Minkov, I.; Gel’mukhanov, F.; Friedlein, R.; Osikowicz, W.; Suess, C.; Öhrwall, G.; Sorensen, S.; Braun, S.; Murdey, R.; Salaneck, W. R., Core excitations of naphthalene: Vibrational structure versus chemical shifts. J. Chem. Phys. 2004, 121 (12), 5733-5739.
Chapter 4
1.Ikeura-Sekiguchi, H.; Sekiguchi, T.; Kitajima, Y.; Baba, Y., Inner shell excitation and dissociation of condensed formamide. Applied surface science 2001, 169, 282-286.
2.Ikeura-Sekiguchi, H.; Sekiguchi, T.; Imamura, M.; Matsubayashi, N.; Shimada, H.; Baba, Y., Site-specific ion desorption from condensed C-and N-deuterated formamide near the carbon and nitrogen K-edge. Surface science 2000, 454, 407-411.
3.Salén, P.; Kamińska, M.; Squibb, R. J.; Richter, R.; Alagia, M.; Stranges, S.; van der Meulen, P.; Eland, J. H.; Feifel, R.; Zhaunerchyk, V., Selectivity in fragmentation of N-methylacetamide after resonant K-shell excitation. Phys. Chem. Chem. Phys. 2014, 16 (29), 15231-15240.
4.Salén, P.; Yatsyna, V.; Schio, L.; Feifel, R.; Richter, R.; Alagia, M.; Stranges, S.; Zhaunerchyk, V., NEXAFS spectroscopy and site-specific fragmentation of N-methylformamide, N, N-dimethylformamide, and N, N-dimethylacetamide. J. Chem. Phys. 2016, 144 (24), 244310.
5.Li, C.; Salén, P.; Yatsyna, V.; Schio, L.; Feifel, R.; Squibb, R.; Kamińska, M.; Larsson, M.; Richter, R.; Alagia, M., Experimental and theoretical XPS and NEXAFS studies of N-methylacetamide and N-methyltrifluoroacetamide. Phys. Chem. Chem. Phys. 2016, 18 (3), 2210-2218.
6.Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G., Direct SCF direct static-exchange calculations of electronic spectra. Theor. Chem. Acc. 1997, 97 (1-4), 14-40.
7.Lin, Y.-S.; Tsai, C.-C.; Lin, H.-R.; Hsieh, T.-L.; Chen, J.-L.; Hu, W.-P.; Ni, C.-K.; Liu, C.-L., Highly selective dissociation of a peptide bond following excitation of core electrons. J. Phys. Chem. A. 2015, 119 (24), 6195-6202.
8.Lin, Y.-S.; Lin, H.-R.; Liu, W.-L.; Lee, Y. T.; Tseng, C.-M.; Ni, C.-K.; Liu, C.-L.; Tsai, C.-C.; Chen, J.-L.; Hu, W.-P., Measurement and prediction of the NEXAFS spectra of pyrimidine and purine and the dissociation following the core excitation. Chem. Phys. Lett. 2015, 636, 146-153.
9.Tsai, C.-C.; Chen, J.-L.; Hu, W.-P.; Lin, Y.-S.; Lin, H.-R.; Lee, T.-Y.; Lee, Y. T.; Ni, C.-K.; Liu, C.-L., Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group. Chem. Phys. Lett. 2016, 660, 60-68.
10.Dithcfield, R.; Hehre, W.; Pople, J., Self-consistent molecular-orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54 (2).
11.Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652.
12.Hirata, S.; Head-Gordon, M., Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314 (3-4), 291-299.
13. Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
14.Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X., Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113 (2), 184-215.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top