|
Chapter 1 (1)Bartlett, N.Xenon Hexafluoroplatinate (V) Xe+[PtF6]− Proc. Chem. Soc. 1962, 218. (2)Pettersson, M.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Chem. Phys. 1998, 109, 618. (3)Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Rasanen, M. Nature 2000, 406, 874. (4)Pettersson, M.; Khriachtchev, L.; Lignell, A.; Räsänen, M.; Bihary, Z.; Gerber, R. J. Chem. Phys. 2002, 116, 2508. (5)Khriachtchev, L.; Räsänen, M.; Gerber, R. B. Acc. Chem. Res.2008, 42, 183. (6)Arppe, T.; Khriachtchev, L.; Lignell, A.; Domanskaya, A. V.; Räsänen, M. Inorg. Chem.2012, 51, 4398. (7)Khriachtchev, L.; Domanskaya, A.; Lundell, J.; Akimov, A.; Räsänen, M.; Misochko, E. J. Phys. Chem. A 2010, 114, 4181. (8)Arppe, T.; Khriachtchev, L.; Lignell, A.; Domanskaya, A. V.; Räsänen, M. Inorg. Chem.2012, 51, 4398. (9)Zhu, C.; Räsänen, M.; Khriachtchev, L. J. Chem. Phys. 2015, 143, 074306. (10) Zhu, C.; Räsänen, M.; Khriachtchev, L. J. Chem. Phys. 2015, 143, 244319. (11) Duarte, L.; Khriachtchev, L. RSC Adv. 2017, 7, 813. (12) Willmann, K.; Vent-Schmidt, T.; Räsänen, M.; Riedel, S.; Khriachtchev, L. RSC Adv. 2015, 5, 35783. (13)Duarte, L.; Khriachtchev, L. Sci. Rep. 2017, 7. (14) Turner, J. J.; Burdett, J. K.; Perutz, R. N.; Poliakoff, M. In Photochemistry–6; Pergamon: 1977, p 271. (15)Grills, D. C.; Sun, X. Z.; Childs, G. I.; George, M. W. J. Phys. Chem. A 2000, 104, 4300. (16)Seppelt, K. Z. Anorg. Allg. Chem. 2003, 629, 2427. (17)Hu, W.-P.; Huang, C.-H. J. Am. Chem. Soc. 2001, 123, 2340. (18)Liang, B.; Andrews, L.; Li, J.; Bursten, B. E. Inorg. Chem.2004, 43, 882. (19)Lin, T.-Y.; Hsu, J.-B.; Hu, W.-P. Chem. Phys. Lett. 2005, 402, 514. (20)Li, T.-H.; Mou, C.-H.; Chen, H.-R.; Hu, W.-P. J. Am. Chem. Soc. 2005, 127, 9241. (21)Liu, Y.-L.; Chang, Y.-H.; Li, T.-H.; Chen, H.-R.; Hu, W.-P. Chem. Phys. Lett. 2007, 439, 14. (22)Sun, Y.-L.; Hong, J.-T.; Hu, W.-P. J. Phys. Chem. A 2010, 114, 9359. (23)Peng, C.-Y.; Yang, C.-Y.; Sun, Y.-L.; Hu, W.-P. J. Chem. Phys. 2012, 137, 194303. (24)Chen, J.-L.; Yang, C.-Y.; Lin, H.-J.; Hu, W.-P. Phys. Chem. Chem. Phys. 2013, 15, 9701. (25)Li, T.-H.; Mou, C.-H.; Chen, H.-R.; Hu, W.-P. J. Am. Chem. Soc. 2005, 127, 9241. (26)Liu, Y.-L.; Chang, Y.-H.; Li, T.-H.; Chen, H.-R.; Hu, W.-P. Chem. Phys. Lett. 2007, 439, 14. (27)Sun, Y.-L.; Hong, J.-T.; Hu, W.-P. J. Phys. Chem. A 2010, 114, 9359. (28)Borocci, S.; Bronzolino, N.; Grandinetti, F. Chem. Eur. J.2006, 12, 5033. (29)Antoniotti, P.; Borocci, S.; Bronzolino, N.; Cecchi, P.; Grandinetti, F. J. Phys. Chem. A 2007, 111, 10144. (30)Borocci, S.; Bronzolino, N.; Giordani, M.; Grandinetti, F. J. Phys. Chem. A 2010, 114, 7382. (31)Manna, D.; Ghosh, A.; Ghanty, T. K. Chem. Eur. J.2015, 21, 8290. (32)Ghosh, A.; Manna, D.; Ghanty, T. K. Phys. Chem. Chem. Phys. 2016, 18, 12289. (33)Ghosh, A.; Dey, S.; Manna, D.; Ghanty, T. K. J. Phys. Chem. A 2015, 119, 5732. (34)Vent‐Schmidt, T.; Goettel, J. T.; Schrobilgen, G. J.; Riedel, S. Chem. Eur. J.2015, 21, 11244. (35) Oettel, J.T., V.G. Haensch, and G.J. Schrobilgen, J. Am. Chem. Soc. 2017. 139, 8725. (36)Liu, Z.; Botana, J.; Hermann, A.; Valdez, S.; Zurek, E.; Yan, D.; Lin, H.-q.; Miao, M.-s.,. Nature communications 2018, 9 (1), 951. (37)Purvis III, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. (38)Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275. (39)Dunning Jr, T. H.; Peterson, K. A.; Wilson, A. K. J. Chem. Phys. 2001, 114, 9244. (40)Dunning Jr, T. H. J. Chem. Phys. 1989, 90, 1007. (41)Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113. (42)Fukui, K. Acc. Chem. Res.1981, 14, 363. (43)Breneman, C. M.; Wiberg, K. B. J. Comput. Chem. 1990, 11, 361. (44)Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Inc, Wallingford CT Google Scholar 2013. (45)Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 242. (46)Lai, T.-Y.; Yang, C.-Y.; Lin, H.-J.; Yang, C.-Y.; Hu, W.-P. J. Chem. Phys. 2011, 134, 244110. Chapter 2 1.Khriachtchev, L.; Pettersson, M.; Lundell, J.; Tanskanen, H.; Kiviniemi, T.; Runeberg, N.; Räsänen, M., A neutral xenon-containing radical, HXeO. J. Am. Chem. Soc. 2003, 125 (6), 1454-1455. 2.Lundell, J.; Khriachtchev, L.; Pettersson, M.; Räsänen, M., Formation and characterization of neutral krypton and xenon hydrides in low-temperature matrices. Low Temp. Phys. 2000, 26 (9), 680-690. 3.Khriachtchev, L.; Tanskanen, H.; Pettersson, M.; Räsänen, M.; Ahokas, J.; Kunttu, H.; Feldman, V., On photochemistry of water in solid Xe: Thermal and light-induced decomposition of HXeOH and HXeH and formation of H 2 O 2. J. Chem. Phys. 2002, 116 (13), 5649-5656. 4.Pettersson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M., A chemical compound formed from water and xenon: HXeOH. J. Am. Chem. Soc. 1999, 121 (50), 11904-11905. 5.Manna, D.; Ghosh, A.; Ghanty, T. K., Prediction of a Neutral Noble Gas Compound in the Triplet State. Chem.: Eur. J. 2015, 21 (22), 8290-8296. 6.Douglas, A.; Jones, W., THE b 1Σ+–X 3Σ− BAND SYSTEM OF NF. Canadian Journal of Physics 1966, 44 (10), 2251-2258. 7.Colin, R.; Devillers, J.; Prevot, F., The b1Σ+-X3Σ− band system of PF. J. Mol. Spectrosc 1972, 44 (2), 230-235. 8.Li, J.; Bursten, B. E.; Liang, B.; Andrews, L., Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr, and Xe atoms in noble gas matrices. Science 2002, 295 (5563), 2242-2245. 9.Andrews, L.; Liang, B.; Li, J.; Bursten, B. E., Noble Gas− Actinide Complexes of the CUO Molecule with Multiple Ar, Kr, and Xe Atoms in Noble-Gas Matrices. J. Am. Chem. Soc. 2003, 125 (10), 3126-3139. 10.Liang, B.; Andrews, L.; Li, J.; Bursten, B. E., On the noble-gas-induced intersystem crossing for the CUO molecule: experimental and theoretical investigations of CUO (Ng) n (Ng= Ar, Kr, Xe; n= 1, 2, 3, 4) complexes in solid neon. Inorg. Chem. 2004, 43 (3), 882-894. 11.Zhao, Y.; Gong, Y.; Chen, M.; Zhou, M., Noble Gas− Transition-Metal Complexes: Coordination of VO2 and VO4 by Ar and Xe Atoms in Solid Noble Gas Matrixes.J. Phys. Chem. A 2006, 110 (5), 1845-1849. 12. Zhou, M.; Wang, Z. X.; von Ragué Schleyer, P.; Xu, Q., Experimental and theoretical characterization of a triplet boron carbonyl compound: BBCO. ChemPhysChem 2003, 4 (7), 763-766. 13.Frisch, M. J.; Head-Gordon, M.; Pople, J. A., A direct MP2 gradient method. Chemical Physics Letters 1990, 166 (3), 275-280. 14.Dunning Jr, T. H.; Peterson, K. A.; Wilson, A. K., Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited. J. Chem. Phys. 2001, 114 (21), 9244-9253. 15.Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M., Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements. J. Chem. Phys. 2003, 119 (21), 11113-11123. 16.Purvis III, G. D.; Bartlett, R. J., A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples. J. Chem. Phys. 1982, 76 (4), 1910-1918. 17.Foster, J. P.; Weinhold, F., Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102 (24), 7211-7218. 18.Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. Chapter 3 1.Stöhr, J., NEXAFS spectroscopy. Springer Science & Business Media: 2013; Vol. 25. 2.Hähner, G., Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids. Chem. Soc. Rev. 2006, 35 (12), 1244-1255. 3.Guttmann, P.; Bittencourt, C., Overview of nanoscale NEXAFS performed with soft X-ray microscopes. Beilstein J. Nanotechnol. 2015, 6 (1), 595-604. 4.Dhez, O.; Ade, H.; Urquhart, S., Calibrated NEXAFS spectra of some common polymers. J. Electron. Spectros. Relat. Phenomena.2003, 128 (1), 85-96. 5.Fonda, L., Multiple-scattering theory of X-ray absorption: a review. J. Phys. Condens. Matter. 1992, 4 (43), 8269. 6.Sheehy, J.; Gil, T.; Winstead, C.; Farren, R.; Langhoff, P., Correlation of molecular valence‐and K‐shell photoionization resonances with bond lengths. J. Chem. Phys. 1989, 91 (3), 1796-1812. 7.Ziegler, T.; Rauk, A.; Baerends, E. J., On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor. Chim. Acta. 1977, 43 (3), 261-271. 8.Triguero, L.; Pettersson, L.; Ågren, H., Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B. 1998, 58 (12), 8097. 9.Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G., Direct, atomic orbital, static exchange calculations of photoabsorption spectra of large molecules and clusters. Chem. Phys. Lett. 1994, 222 (1-2), 75-81. 10.Runge, E.; Gross, E. K., Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52 (12), 997. 11.Gross, E.; Dobson, J.; Petersilka, M., Density functional theory of time-dependent phenomena. In Density functional theory II, Springer: 1996; pp 81-172. 12.Pun, C. D., Recent advances in density functional methods. World Scientific: 1995; Vol. 1. 13.Hirata, S.; Head-Gordon, M., Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314 (3-4), 291-299. 14.Besley, N. A.; Asmuruf, F. A., Time-dependent density functional theory calculations of the spectroscopy of core electrons. Phys Chem Chem Phys 2010, 12 (38), 12024-39. 15.Besley, N. A.; Peach, M. J.; Tozer, D. J., Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals. Phys. Chem. Chem. Phys. 2009, 11 (44), 10350-10358. 16.Harbach, P. H.; Wormit, M.; Dreuw, A., The third-order algebraic diagrammatic construction method (ADC (3)) for the polarization propagator for closed-shell molecules: Efficient implementation and benchmarking. J. Chem. Phys. 2014, 141 (6), 064113. 17.Wenzel, J.; Holzer, A.; Wormit, M.; Dreuw, A., Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states. J. Chem. Phys. 2015, 142 (21), 214104. 18.Coriani, S.; Koch, H., Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. AIP Publishing: 2015. 19.Coriani, S.; Koch, H., Erratum:“Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework”[J. Chem. Phys. 143, 181103 (2015)]. J. Chem. Phys. 2016, 145 (14), 149901. 20.Alagia, M.; Bodo, E.; Decleva, P.; Falcinelli, S.; Ponzi, A.; Richter, R.; Stranges, S., The soft X-ray absorption spectrum of the allyl free radical. Phys. Chem. Chem. Phys. 2013, 15 (4), 1310-1318. 21.Hitchcock, A.; Brion, C., Carbon K-shell excitation of C2H2, C2H4, C2H6 and C6H6 by 2.5 keV electron impact. J. Electron. Spectros. Relat. Phenomena.1977, 10 (3), 317-330. 22.McLaren, R.; Clark, S.; Ishii, I.; Hitchcock, A., Absolute oscillator strengths from K-shell electron-energy-loss spectra of the fluoroethenes and 1, 3-perfluorobutadiene. Physical Review A 1987, 36 (4), 1683. 23.Hitchcock, A.; Newbury, D.; Ishii, I.; Stöhr, J.; Horsley, J.; Redwing, R.; Johnson, A.; Sette, F., Carbon K‐shell excitation of gaseous and condensed cyclic hydrocarbons: C3H6, C4H8, C5H8, C5H10, C6H10, C6H12, and C8H8. J. Chem. Phys. 1986, 85 (9), 4849-4862. 24.Hitchcock, A.; Fischer, P.; Gedanken, A.; Robin, M., Antibonding. sigma.* valence MOs in the inner-shell and outer-shell spectra of the fluorobenzenes. Journal of Physical Chemistry 1987, 91 (3), 531-540. 25.Robin, M.; Ishii, I.; McLaren, R.; Hitchcock, A., Fluorination effects on the inner-shell spectra of unsaturated molecules. J. Electron. Spectros. Relat. Phenomena.1988, 47, 53-92. 26.Turci, C. C.; Urquhart, S. G.; Hitchcock, A. P., Inner-shell excitation spectroscopy of aniline, nitrobenzene, and nitroanilines. Can. J. Chem. 1996, 74 (6), 851-869. 27.Rühl, E.; Wen, A.; Hitchcock, A., Inner-shell excitation of η5-C5H5Co (CO) 2 and related compounds studied by gas phase electron energy loss spectroscopy. J. Electron. Spectros. Relat. Phenomena.1991, 57 (2), 137-164. 28.Plashkevych, O.; Yang, L.; Vahtras, O.; Ågren, H.; Petterson, L. G., Substituted benzenes as building blocks in near-edge X-ray absorption spectra. Chem. Phys. 1997, 222 (2-3), 125-137. 29.Bolognesi, P.; O’Keeffe, P.; Ovcharenko, Y.; Coreno, M.; Avaldi, L.; Feyer, V.; Plekan, O.; Prince, K.; Zhang, W.; Carravetta, V., Pyrimidine and halogenated pyrimidines near edge x-ray absorption fine structure spectra at C and N K-edges: experiment and theory. J. Chem. Phys. 2010, 133 (3), 034302. 30.Lin, Y.-S.; Lin, H.-R.; Liu, W.-L.; Lee, Y. T.; Tseng, C.-M.; Ni, C.-K.; Liu, C.-L.; Tsai, C.-C.; Chen, J.-L.; Hu, W.-P., Measurement and prediction of the NEXAFS spectra of pyrimidine and purine and the dissociation following the core excitation. Chem. Phys. Lett. 2015, 636, 146-153. 31.Dill, J. D.; Pople, J. A., Self‐consistent molecular orbital methods. XV. Extended Gaussian‐type basis sets for lithium, beryllium, and boron. J. Chem. Phys. 1975, 62 (7), 2921-2923. 32.Van Leeuwen, R.; Baerends, E., Exchange-correlation potential with correct asymptotic behavior. Physical Review A 1994, 49 (4), 2421. 33.Woon, D. E.; Dunning Jr, T. H., Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98 (2), 1358-1371. 34.Woon, D. E.; Dunning Jr, T. H., Gaussian basis sets for use in correlated molecular calculations. V. Core‐valence basis sets for boron through neon. J. Chem. Phys. 1995, 103 (11), 4572-4585. 35.Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. 36.Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X., Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics 2015, 113 (2), 184-215. 37. Tsuneda, T.; Song, J.-W.; Suzuki, S.; Hirao, K., On Koopmans’ theorem in density functional theory. J. Chem. Phys. 2010, 133 (17), 174101. 38.Cavigliasso, G.; Chong, D. P., Accurate density-functional calculation of core-electron binding energies by a total-energy difference approach. J. Chem. Phys. 1999, 111 (21), 9485-9492. 39.Stener, M.; Fronzoni, G.; de Simone, M. d., Time dependent density functional theory of core electrons excitations. Chem. Phys. Lett. 2003, 373 (1-2), 115-123. 40.Imamura, Y.; Otsuka, T.; Nakai, H., Description of core excitations by time‐dependent density functional theory with local density approximation, generalized gradient approximation, meta‐generalized gradient approximation, and hybrid functionals. J. Comput. Chem. 2007, 28 (12), 2067-2074. 41. Nakata, A.; Imamura, Y.; Nakai, H., Hybrid exchange-correlation functional for core, valence, and Rydberg excitations: Core-valence-Rydberg B3LYP. J. Chem. Phys.2006, 125 (6), 064109. 42.Minkov, I.; Gel’mukhanov, F.; Friedlein, R.; Osikowicz, W.; Suess, C.; Öhrwall, G.; Sorensen, S.; Braun, S.; Murdey, R.; Salaneck, W. R., Core excitations of naphthalene: Vibrational structure versus chemical shifts. J. Chem. Phys. 2004, 121 (12), 5733-5739. Chapter 4 1.Ikeura-Sekiguchi, H.; Sekiguchi, T.; Kitajima, Y.; Baba, Y., Inner shell excitation and dissociation of condensed formamide. Applied surface science 2001, 169, 282-286. 2.Ikeura-Sekiguchi, H.; Sekiguchi, T.; Imamura, M.; Matsubayashi, N.; Shimada, H.; Baba, Y., Site-specific ion desorption from condensed C-and N-deuterated formamide near the carbon and nitrogen K-edge. Surface science 2000, 454, 407-411. 3.Salén, P.; Kamińska, M.; Squibb, R. J.; Richter, R.; Alagia, M.; Stranges, S.; van der Meulen, P.; Eland, J. H.; Feifel, R.; Zhaunerchyk, V., Selectivity in fragmentation of N-methylacetamide after resonant K-shell excitation. Phys. Chem. Chem. Phys. 2014, 16 (29), 15231-15240. 4.Salén, P.; Yatsyna, V.; Schio, L.; Feifel, R.; Richter, R.; Alagia, M.; Stranges, S.; Zhaunerchyk, V., NEXAFS spectroscopy and site-specific fragmentation of N-methylformamide, N, N-dimethylformamide, and N, N-dimethylacetamide. J. Chem. Phys. 2016, 144 (24), 244310. 5.Li, C.; Salén, P.; Yatsyna, V.; Schio, L.; Feifel, R.; Squibb, R.; Kamińska, M.; Larsson, M.; Richter, R.; Alagia, M., Experimental and theoretical XPS and NEXAFS studies of N-methylacetamide and N-methyltrifluoroacetamide. Phys. Chem. Chem. Phys. 2016, 18 (3), 2210-2218. 6.Ågren, H.; Carravetta, V.; Vahtras, O.; Pettersson, L. G., Direct SCF direct static-exchange calculations of electronic spectra. Theor. Chem. Acc. 1997, 97 (1-4), 14-40. 7.Lin, Y.-S.; Tsai, C.-C.; Lin, H.-R.; Hsieh, T.-L.; Chen, J.-L.; Hu, W.-P.; Ni, C.-K.; Liu, C.-L., Highly selective dissociation of a peptide bond following excitation of core electrons. J. Phys. Chem. A. 2015, 119 (24), 6195-6202. 8.Lin, Y.-S.; Lin, H.-R.; Liu, W.-L.; Lee, Y. T.; Tseng, C.-M.; Ni, C.-K.; Liu, C.-L.; Tsai, C.-C.; Chen, J.-L.; Hu, W.-P., Measurement and prediction of the NEXAFS spectra of pyrimidine and purine and the dissociation following the core excitation. Chem. Phys. Lett. 2015, 636, 146-153. 9.Tsai, C.-C.; Chen, J.-L.; Hu, W.-P.; Lin, Y.-S.; Lin, H.-R.; Lee, T.-Y.; Lee, Y. T.; Ni, C.-K.; Liu, C.-L., Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group. Chem. Phys. Lett. 2016, 660, 60-68. 10.Dithcfield, R.; Hehre, W.; Pople, J., Self-consistent molecular-orbital methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54 (2). 11.Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652. 12.Hirata, S.; Head-Gordon, M., Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 1999, 314 (3-4), 291-299. 13. Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. 14.Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X., Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113 (2), 184-215.
|