跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/01 22:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:樂美辰
研究生(外文):Mei-Chen Yueh
論文名稱:形狀記憶合金螺旋彈簧在雙向形狀記憶效應下之機械行為
論文名稱(外文):Mechanical Behavior of A SMA Helical Spring with Two-way Shape Memory Effect
指導教授:李春穎李春穎引用關係
口試委員:蕭俊祥林有鎰
口試日期:2010-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:54
中文關鍵詞:形狀記憶合金雙向形狀記憶效應Brinson理論模型
外文關鍵詞:SMATwo-way SMEBrinson model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究為探討形狀記憶合金螺旋彈簧在雙向形狀記憶效應下之機械行為。當螺旋彈簧經由控制電流給予其焦耳熱進行溫度調變,並在設定之固定長度下,量測控制電流、溫度與力量間的關係。在單獨記憶合金線材之軸向拉伸負載下,藉由量測應力及電阻與電流間斜率的改變得知其相變化的發生,並找出相關之材料模型參數。最後藉由Brinson之材料理論模型與螺旋彈簧理論公式的結合,將記憶合金彈簧在不同變形長度與控制溫度下之理論值與實際量測結果進行比對及討論。當溫度增加時,彈簧產生的應力在固定的控制長度下會增加,但其是以非線性的變化達到飽和的沃斯田體相。如果彈簧的控制長度增加時,其在固定溫度下的負載也會增加,但其負載曲線的斜率並不會維持不變,因此我們推斷其是受到了應力所引發的麻田散體相變化,因而導致負載曲線的斜率下降。且經由螺旋彈簧的理論公式的比較下,其量測的結果與理論推導的結果得出了良好的正確性。

In this paper, the processes of making SMA (Shape Memory Alloy) helical springs and training them to be of the two-way SME (Shape Memory Effect) were presented. The helical spring was activated by controlling the electric current applied via the Joule heating. The relationship between the applied current and the resulted temperature was measured. By fixing the SMA spring in certain lengths, the resulting actuation force of the spring upon different current levels were investigated. With the variation of the slope in these load-current and load-temperature diagrams, the rate of phase transformation in the SMA springs could be inferred. The governing equation of the helical spring in axial loading was also derived by using Brinson model. The comparison between the measurement and theoretical modeling was conducted and discussed. When the temperature was raised, the loading on the spring with controlled fixed length increased. However, the increase of the spring force was nonlinear and became saturated as the temperature was above the finish point of the austenite transformation. If the controlled length increased, then the loading increased at the fixed temperature. The slope of the loading curve, i.e. the spring constant, was not always constant due to the possible stress induced martensitic transformation. The transformation tended to lower the slope of the loading curve. By the theoretical formulation in the helical spring, the comparison between the measured results and the computational results showed good correlation.

摘要……………………………………………………………………………………i
ABSTRACT…………………………………………………………………………..ii
Acknowledgment……………………………………………………………………..iv
Contents……………………………………………………………………………......v
List of Tables………………………………………………………….……………vi
List of Figures…………………………………………………………….…………vii
Chapter 1 INTRODUCTION………………………………………………….………1
1.1 Introduction of Shape Memory Alloys…………………………………….1
1.1.1 The Applications of SMA Helical Springs………………………..…2
1.1.2 The History of SMA………………………………………………….3
1.2 Motivation of This Study…………………………………………………..3
1.3 Structure of This Thesis……………………………………………………4
Chapter 2 LITERATURE REVIEW……………………………………...…………..5
2.1 Characteristics of SMA……………………………………………………..6
2.2 Brinson’s Model…………………………………………………………….7
2.3 Training of Shape Memory Alloy…………………………………………...9
Chapter 3 THEORETICAL FORMULATION……………………………………....11
Chapter 4 EXPERIMENTAL……………………………………………...…………17
4.1 DSC Analysis……………………………………………………………17
4.2 Shape Memory Training…………………………………………………..18
4.3 Experimental for Mechanical Property Measurement of SMA Springs…...21
Chapter 5 RESULT AND DISCUSSION…………………………………………….26
5.1 SMA Wire………………………………………………………………….26
5.2 SMA Helical Spring……………………………………………………...30
5.3 The Measurements from the Other ‘Twins’ Spring……………………..39
Chapter 6 CONCLUSIONS……………………………………...…………………..49
6.1 Training and Measuring the SMA Helical Spring………………………….49
6.2 Combination of the Brinson’s Model and the Theoretical Formulation….50
6.3 Future Works…………………………………………………………………50
REFERENCES……………………………………………………………………….51
Writer Introduction…………………………………………………………………...55


[1]K. Ikuta, M. Tsukamoto, S. Hirose, “Shape Memory Alloy Servo Actuator System with Electric Resistance Feedback and Application for Active Endoscope,” Proceedings IEEE, International Conference on Robotics & Automation, April 1988, pp. 427-430.
[2]C. B. Churchill, J. A. Shaw, M. A. Iadicola, “Tips and Tricks for Characterizing Shape Memory Alloy Wire: Part 4 – Thermo-Mechanical Coupling,” Experimental Characterization of Active Materials Series, 2010, pp. 1-18.
[3]Y. P. Lee, B. Kim, M. G. Lee, and J. O. Park, “Locomotive Mechanism Design and Fabrication of Biomimetic Micro Robot Using Shape Memory Alloy,” Proceedings IEEE, International Conference on Robotics & Automation, April 2004, pp. 5007-5012.
[4]L. C. Brinson, M. S. Huang, “Simplifications and Comparisons of Shape Memory Alloy Constitutive Models,” Journal of Intelligent Material and Structures, Vol. 7-January 1996, pp.108-114.
[5]J. Ryhänen, “Biocompatibility Evaluation of Nickel-titanium Shape Memory Metal Alloy,” Ph.D. Departments of Surgery, Anatomy and Pathology, Oulu University, 2000.
[6]S. Maeda, K. Abe, K. Yamamoto, O. Tohyama, and H. Ito, “Active Endoscope with SMA (Shape Memory Alloy) Coil Springs,” IEEE, Micro Electro Mechanical Systems (MEMS), 1996, pp. 290-295.
[7]Y. Haga, M. Esashi, and S. Maeda, “Bending, Torsional and Extending Active Catheter Assembled Using Electroplating,” 13th IEEE, International Micro Electro Mechanical Systems Conference (MEMS), 2000, pp. 181-186.
[8]Z. W. Zhu, Z. B. Gou, J. Xu, and H. L. Wang, “Research on Nonlinear Dynamic Characteristics of Semi-active Suspension System with SMA Spring,” 2008 International Conference on Intelligent Computation Technology and Automation, pp. 688-692.
[9]K. Otsuka, C. M. Wayman, Shape Memory Materials, Cambridge University Press, 1998.
[10]A. Ölander, “An Electrochemical Investigation of Solid Cadmium - Gold Alloys,” Journal of the American Chemical Society, 54, 1932, pp. 3819-3833.
[11]A. B. Greninger and V. G. Mooradian, “Strain Transformation in Metastable Copper-Zinc and Beta Copper- Tin Alloys,” Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers 128, 1938, pp. 337-368.
[12]G. V. Kurdjumov and L. G. Khandros, “First Reports of the Thermoelastic Behavior of the Martensitic Phase of Au-Cd Alloys,” Doklady Akad. Nauk S.S.S.R., 56, 1949, pp. 221-213.
[13]L. C. Chang and T. A. Read, “Plastic Deformation and Diffusionless Phase Changes in Metals. The Gold-Cadmium Beta Phase,” Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers 189, 1951, pp. 47-52.
[14]J. A. Shaw, C. B. Churchill, M. A. Iadicola, “Tips and Tricks for Characterizing Shape Memory Alloy Wire: Part 1 – Differential Scanning Calorimetry and Basic Phenomena,” Experimental Techniques 32(5), 2008, pp.55–62.
[15]K. Wada, Y. Liu, “On the Mechanisms of Two-way Memory Effect and Stress-assisted Two-way Memory Effect in NiTi Shape Memory Alloy,” Journal of Alloys and Compounds 499, 2008, pp. 125-128.
[16]L. C. Brinson, A. Bekker, and S. Hwang, “Deformation of Shape Memory Alloys Due to Thermo-induced Transformation,” Journal of Intelligent Material Systems and Structures, Vol. 7-January 1996, pp. 97-107.
[17]H. Prahlad, I. Chopra, “Comparative Evaluation of Shape Memory Alloy Constitutive Models with Experimental Data,” Journal of Intelligent Material and Structures, Vol. 12-June 2001, pp. 383-395.
[18]Z. G. Wang, X. T. Zu, J. Y. Dai, P. Fu, X. D. Feng, “Effect of Thermomechanical Training Temperature on the Two-way Shape Memory Effect of TiNi and TiNiCu Shape Memory Alloys Springs,” Materials Letters 57, 2003, pp.1501-1507.
[19]C.Y. Lee, C.S. Lin and H.C. Zhao, “Dynamic Characteristics of Platform with SMA Helical Spring Suspension,” Proceedings of the Thirteenth International Congress on Sound and Vibration (ICSV13), pp. 2-6 July 2006.
[20]C. Y. Lee, H. C. Zhuo, and C. W. Hsu, “Lateral Vibration of A Composite Stepped Beam Consisted of SMA Helical Spring Based on Equivalent Euler–Bernoulli Beam Theory,” Journal of Sound and Vibration, 324, 2009, pp.179–193.
[21]許家維,形狀記憶合金螺旋彈簧用於半主動懸吊平台減振之研究,大葉大學機械工程研究所碩士論文,2008。
[22]楊子弘,混成形狀記憶螺旋彈簧用於半主動懸吊平台減振之研究,大葉大學機械與自動化工程學系碩士論文,2009。
[23]F. M. Davidson, C. Liang, “Investigation of Torsional Shape Memory Alloy Actuators,” SPIE Vol. 2717 1 May 1996, pp. 672-682.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top