|
[1]S. R. Nassif, “Modeling and analysis of manufacturing variations,” in Proc. IEEE Conf. Custom Integr. Circuits, 2001, pp. 223-228. [2]C. Visweswariah, “Death, Taxes and failing chips,” in Proc. Des. Autom. Conf., 2003, pp. 343-347. [3]S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter variation and impact on circuits and microarchitecture,” in Proc. Des. Autom. Conf., 2003, pp. 338-342. [4]A. Bhavnagarwala, X. Tang, and J. Meindl, “The impact of intrinsic device fluctuations on CMOS SRAM cell stability,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 658-665, Apr. 2001. [5]X. Tang, V. De, and J. Meindl, “Intrinsic MOSFET parameter fluctuations due to random dopant placement,” IEEE Trans. Very Large Scale Integr. Syst., vol. 5, no. 4, pp. 369-376, Dec. 1997. [6]S. Mukhopadhyay, H. Mahmoodi, K. Roy, “Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 24, no. 12, pp. 1859-1880, Dec. 2005 [7]D.E. Khalil, M. Khellah, Nam-Sung Kim, Y. Ismail, T. Karnik, V.K. De, “Accurate estimation of SRAM dynamic stability,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 12, pp. 1639-1647, Dec. 2008 [8] H. Soeleman, and K. Roy, “Ultra-low power digital subthreshold logic circuits,” in proc. VLSI Circuit Symp., 1999, pp. 94-96. [9] M. E. Hwang, A. Raychowdhury, K. Kim, and K. Roy, “A 85mV 40nW process-tolerant subthreshold 8x8 FIR filter in 130nm technology,” in proc. VLSI Circuit Symp., 2007, pp. 154-155. [10] B. Zhai, et al., “Energy-efficient Subthreshold processor design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 8, pp. 1127-1137, Aug. 2009. [11] A. Wang, and A. Chandrakasan, “A 180-mV subthreshold FFT processor using a minimum energy design methodology,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 310-319, Jan. 2005. [12] D. Bol, R. Ambroise, D. Flandre, and J. D. Legat, “Impact of technology scaling on digital subthreshold circuits,” in proc. ISVLSI, 2008, pp. 179-184. [13] B. H. Calhoun, A. Wang, and A. Chandrakasan, “Modeling and sizing for minimum energy operation in subthreshold circuits,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1778-1786, Sep. 2005. [14]J. P. Kulkarni, K. Kim, and K. Roy, “A 160mV, fully differential, robust Schmitt trigger based sub-threshold SRAM,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2303-2313, Oct. 2007. [15]I. J. Chang, J. Kim, S. P. Park, and K. Roy, “A 32 kb 10T subthreshold SRAM array with bit-interleaving and differential read scheme in 90nm CMOS,” in Proc. ISSCC, 2008, pp. 388-622. [16]T. H. Kim, J. Liu, and C. H. Kim, “A voltage scalable 0.26V, 64 kb 8T SRAM with Vmin lowering techniques and deep sleep mode,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1785-1795, Jun. 2009. [17]M. Qazl, K. Stawiasz, L. Chang, and K.Roy, “A 512kb 8T SRAM macro operating down to 0.57V with an AC-coupled sense amplifier and embedded data-retention-voltage sensor in 45nm SOI CMOS,” in proc. ISSCC, 2010, pp. 350-351. [18]C. H. Lo, S. Y. Huang, “P-P-N based 10T SRAM cell for low-leakage and resilient subthreshold operation,” IEEE J. of Solid-State Circuits, vol. 46, no. 3, pp. 695-704, Mar. 2011. [19] A. Teman, L. Pergament, O. Cohen, and A. Fish, “A 250mV 8kb 40nm ultra-low power 9T supply feedback SRAM (SF-SRAM),” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2713-2726, Nov. 2011. [20]M. F. Chang, et al., “A differential data aware power-supplied (D2AP) 8T SRAM cell with expanded write/read stabilities for lower VDDmin applications,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1234-1245, Jun. 2010. [21] M. Yamauchi, et al., “A 45nm 0.6V cross-point 8T SRAM with negative biased read/write assist,” in proc. VLSI Circuit Symp., 2009, pp.158-159. [22] S. Yoshimoto, et al., ”A 40-nm 0.5-V 20.1-uW/MHz 8T SRAM with low-energy disturb mitigation scheme,” in proc. VLSI Circuit Symp., 2011, pp. 72-73. [23]E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE J. Solid-State Circuits, vol. sc-22, no. 5, pp. 748-754, Oct. 1987. [24]J. P. Kulkarni, and K. Roy, “Ultralow-voltage process-variation-tolerant schmitt-trigger-based SRAM design,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., pp. 319-332, 2010. [25]P. Hamcha, et al., “Neutron soft error rate measurements in a 90-nm CMOS process and scaling trends in SRAM from 0.25-pm to 90-nm generation,” in proc. IEDM, 2003, pp. 21.5.1-21.5.4. [26]H. Yamauchi, “A discussion on SRAM circuit design trend in deeper nanometer-scale technologies,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 5, pp. 763-774, May 2010 [27]B. H. Calhoun, A. Wang, and A. Chandrakasan, “A 256kb sub-threshold SRAM in 65nm CMOS,” in proc. ISSCC, 2006, pp. 2592-2601. [28]Prabhat, D. Flynn ARM, Cambridge, United Kingdom “An 80nW Retention 11.7pJ/Cycle Active Subthreshold ARM Cortex-M0+ Subsystem in 65nm CMOS for WSN Applications” .
|