跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張雅惠
研究生(外文):Ya-Huei Chang
論文名稱:廣藿香醇誘導人類子宮內膜癌細胞株細胞週期G1期停滯之相關調控機制研究
論文名稱(外文):The regulation of G1 Cell-cycle arrest in human endometrial cancer cell line by Patchouli Alcohol (PA)
指導教授:徐怡強
指導教授(外文):Yi-Chiang Hsu
學位類別:碩士
校院名稱:長榮大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:78
中文關鍵詞:廣藿香廣藿香醇細胞凋亡細胞週期G1期停滯RAD9
外文關鍵詞:Pogostemon cablinPatchouli AlcoholCell cycle G1 phase arrestRAD9
相關次數:
  • 被引用被引用:0
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著社會節奏加快,忙碌的現代人生活習慣開始跟著改變,不良的生活習慣,慢慢的侵犯人體。目前國人女性罹患子宮體癌比例已超越子宮頸癌以及卵巢癌成為女性生殖道癌症第一名,而罹患歲數已有年輕化的趨勢。大自然植物界為豐富的資源庫,植物中蘊藏許多可利用的生物活性並且具有相當潛力發展成於醫療藥物。本篇論文使用民間中草藥廣藿香以及其有效化合物廣藿香醇對於第一型子宮內膜癌細胞株之抗腫瘤作用,藉由探討細胞增殖、細胞週期及細胞凋亡等相關機制,發現以水萃取之廣藿香 (Pogostemon cablin;PC) 化合物可抑制子宮內膜癌細胞株增殖並且介導粒線體去極化使其走向細胞凋亡。廣藿香相關化合物,其中以廣藿香醇 (PatchouliAlcohol; PA) 對於子宮內膜癌細胞株最具有抗增殖作用,以引發粒線體去極化而活化 caspase 9 以及 caspase 3 方式造成細胞凋亡現象,並也造成細胞週期G1期停滯,先以即時聚合酶鏈式反應 (Real time polymerase chain reaction; RealTime-PCR) 檢測基因表達,G1 期調控基因 CDK4、Cyclin E 和 Cyclin D 表達下降,而位於細胞週期上游條控基因 p27, p21 以及 p53 表達上升,再以西方墨點法檢測蛋白質表達,調控 G1 期之蛋白 CDK4、Cyclin D 以及 Cyclin E/CDK2 之間結合力表達皆下降。但引發細胞週期上游調控蛋白 p53、p27 則未改變,藉由Human Cell Cycle PCR Array具有多樣性的基因進行分析,針對其中呈現上調之RAD9 homolog A (S. pombe) (RAD9) 基因進行探討,發現RAD9蛋白表達上升並且與RAD9B之間結合力上升,進而調控下游蛋白CHK2以及CDC25A的磷酸化造成 G1 期停滯。

關鍵字:廣藿香; 廣藿香醇; 細胞凋亡; 細胞週期G1期停滯; RAD9
The quickening pace of modern life is promoting unhealthy living habits that gradually take their toll on the human body. Uterine cancer has surpassed cervical cancer and ovarian cancer to become the most common forms of female reproductive system cancer in Taiwan, Furthermore, the average age at uterine cancer occurs is showing a downward trend. A wide range of bioactive resources with the potential to become medical drugs exist in the plant kingdom. This study examined the anti-tumor effects of the Chinese medicinal herb Pogostemon cablin (PC) and its active compound Patchouli Alcohol (PA) on Type I endometrial cancer cells. In our examination, it was discovered that the water extract of PC can inhibit the proliferation of endometrial cancer cells and mediate mitochondrial depolarization, thereby inducing apoptosis. Among the compounds of PC, PA was shown to be the most effective in inhibiting the proliferation of endometrial cancer cells and promoting cell apoptosis by inducing mitochondrial depolarization and activating caspase 9 as well as caspase 3, resulting in G1 cell-cycle arrest. We employed real-time polymerase chain reaction to detect gene expression as well as the Human Cell Cycle PCR Array to investigate upregulated RAD9 genes. The protein genes CDK4, Cyclin E, and Cyclin D, which regulate the G1 cell cycle, were shown to be downregulated, whereas upstream regulatory genes p27, p21, and p53 were upregulated. Western blot analysis revealed downregulation in the expression of CDK4 and Cyclin D and the binding forces in Cyclin E/CDK2. However, no changes were observed in the expression of upstream regulatory genes p53 or p27. The expression of the RAD9 protein increased, and the binding force with its paralog RAD9B increased, which regulate the phosphorylation of downstream protein CHK2 and phosphatase CDC25A, thereby resulting in G1 cell-cycle arrest.

Keywords:Pogostemon cablin; Patchouli Alcohol; Cell cycle G1 phase arrest; RAD9
目錄
頁次
英文縮寫 III
中文摘要 IV
英文摘要 VI
壹、導論 1
一、子宮內膜癌 1
二、子宮體癌類型 2
三、廣藿香 3
四、細胞週期調控 5
五、細胞凋亡 7
六、人類 RAD9 蛋白 8
貳、研究材料與方法 9
一、細胞培養 9
二、藥物配置 9
三、細胞活性測試 9
四、細胞計數方法 10
五、細胞凋亡分析 11
六、細胞週期分析 12
七、Caspase 3活性分析 14
八、粒線體膜電位分析 (Mitochondrial Membrane Potential; ΔΨm) 15
九、西方墨點法 (Western Blot) 15
十、免疫共沉澱法 (Co-Immunoprecipitation) 19
十一、總細胞RNA的純化分離 19
十二、反轉錄反應 (Reverse transcription polymerase chain reaction) 20
十三、即時聚合酶鏈式反應 (Real time polymerase chain reaction) 21
十四、Human Cell Cycle RT² Profiler™ PCR Array分析 21
十五、統計分析 22
參、研究構想 23
肆、結果 24
一、廣藿香水萃取物對子宮內膜癌細胞株細胞增殖影響 24
二、廣藿香水萃取物對子宮內膜癌細胞株細胞凋亡影響 24
三、廣藿香水萃取物對子宮內膜癌細胞株細胞週期影響 24
四、檢測細胞凋亡相關蛋白質表達 25
五、檢測粒線體膜電位的變化 25
六、分析廣藿香中有效化合物對子宮內膜癌細胞株細胞增殖的影響 26
七、廣藿香醇對子宮內膜癌細胞株細胞增殖型態的影響 26
八、廣藿香醇對子宮內膜癌細胞株細胞增殖的影響 27
九、廣藿香醇對子宮內膜癌細胞株細胞凋亡的影響 27
十、廣藿香醇對子宮內膜癌細胞株細胞週期影響 27
十一、廣藿香醇對子宮內膜癌細胞株細胞凋亡相關蛋白質表達 28
十二、檢測廣藿香醇對子宮內膜癌細胞株之粒線體膜電位變化 28
十三、廣藿香醇對子宮內膜癌細胞株之細胞週期與凋亡相關基因影響 29
十四、Human Cell Cycle PCR Array分析 29
十五、廣藿香醇對子宮內膜癌細胞株細胞內調控 G1 期蛋白質表達 29
十六、RAD9 蛋白調控子宮內膜癌細胞株細胞細胞週期 G1 期的影響 30
伍、討論 31
陸、結論 38
柒、文獻 39
附表 52
附錄 55
附圖 57
柒、文獻
1.Smith, R. A., von Eschenbach, A. C., Wender, R., Levin, B., Byers, T., Rothenberger, D., et al. (2001). American cancer society guidelines for the early detection of cancer: Update of early detection guidelines for prostate, colorectal, and endometrial cancers: Also: Update 2001—testing for early lung cancer detection. CA: A Cancer Journal for Clinicians, 51(1), 38-75.
2.Situ, B. C. I. (2015). Cancer facts.
3.Huang, C., Chen, C., Chen, Y., Chiang, C., Hsu, T., Lin, M., et al. (2012). Nationwide surveillance in uterine cancer: Survival analysis and the importance of birth cohort: 30-year population-based registry in taiwan.
4.2012年癌症登記報告(2015年4月14日). 衛生福利部國民健康署.
5.TCOG 婦癌工作群編撰小組. (2011年6月). 婦癌臨床診療指引 (第二版 ed.) 財團法人國家衛生研究院(NHRI)、癌症研究所、台灣癌症臨床研究合作組織(TCOG).
6.何志明. (2010). 婦癌的防治. 聲洋防癌之聲, 130, 2-8.
7.婦癌多專科團隊擬定. (2014.03.13). 子宮內膜癌診療指引 天主教聖馬爾定醫院.
8.Parazzini, F., & Progetto Menopausa Italia Study Group. (2007). Determinants of age at menopause in women attending menopause clinics in italy. Maturitas, 56(3), 280-287.
9.Goodman, M. T., Hankin, J. H., Wilkens, L. R., Lyu, L. C., McDuffie, K., Liu, L. Q., et al. (1997). Diet, body size, physical activity, and the risk of endometrial cancer. Cancer Research, 57(22), 5077-5085.
10.Stockwell, H. G., & Lyman, G. H. (1987). Cigarette smoking and the, risk of female reproductive cancer. American Journal of Obstetrics and Gynecology, 157(1), 35-40.
11.Million Women Study Collaborators. (2005). Endometrial cancer and hormone-replacement therapy in the million women study. The Lancet, 365(9470), 1543-1551.
12.Gronroos, M., Salrni, T. A., Vuento, M. H., Aromaa, A. R., Siegberg, R., & Savolainen, E. R. (1993). Mass screening for endometrial cancer directed in risk groups of patients with diabetes and patients with hypertension. Hypertension, 1, 4.8.
13.Maggi, R., Lissoni, A., Spina, F., Melpignano, M., Zola, P., Favalli, G., et al. (2006). Adjuvant chemotherapy vs radiotherapy in high-risk endometrial carcinoma: Results of a randomised trial. British Journal of Cancer, 95(3), 266-271.
14.Southcott, B. M. (2001). Carcinoma of the endometrium. Drugs, 61(10), 1395-1405.
15.Wood, A. J., & Osborne, C. K. (1998). Tamoxifen in the treatment of breast cancer. New England Journal of Medicine, 339(22), 1609-1618.
16.Smith-Bindman, R., Kerlikowske, K., Feldstein, V. A., Subak, L., Scheidler, J., Segal, M., et al. (1998). Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. Jama, 280(17), 1510-1517.
17.Creasman, W. T. et al. Carcinoma of the corpus uteri. FIGO 26th Annual Report on the Results of Treatment in Gynecological Cancer. Int J Gynecol Obstet 95, S105–S143 (2006)
18.Bokhman, J. V. (1983). Two pathogenetic types of endometrial carcinoma. Gynecologic Oncology, 15(1), 10-17.
19.Felix, A. S., Weissfeld, J. L., Stone, R. A., Bowser, R., Chivukula, M., Edwards, R. P., et al. (2010). Factors associated with type I and type II endometrial cancer. Cancer Causes & Control, 21(11), 1851-1856.
20.Amant, F., Mirza, M. R., & Creutzberg, C. L. (2012). Cancer of the corpus uteri. International Journal of Gynecology & Obstetrics, 119, S110-S117.
21.Creasman, W. T., Odicino, F., Maisonneuve, P., Quinn, M. A., Beller, U., Benedet, J. L., et al. (2006). Carcinoma of the corpus uteri. FIGO 26th annual report on the results of treatment in gynecological cancer. International Journal of Gynaecology and Obstetrics: The Official Organ of the International Federation of Gynaecology and Obstetrics, 95 Suppl 1, S105-43.
22.Creasman, W. (2009). Revised FIGO staging for carcinoma of the endometrium. International Journal of Gynecology & Obstetrics, 105(2), 109.
23.李崗榮,台灣青草藥對症圖點 (2009)
24.Wu, Y., Guo, Q., He, J., Lin, Y., Luo, L., & Liu, G. (2010). Genetic diversity analysis among and within populations of pogostemon cablin from china with ISSR and SRAP markers. Biochemical Systematics and Ecology, 38(1), 63-72.
25.徐鴻華. (2004年(民國93年)1月). 中草藥彩色圖鑑(一) (初版一刷 ed.) 西北出版社
26.邱勇嘉. (2009). 左手香及其活性成分香芹酚鎮痛及抗發炎作用機轉之研究. 中國醫藥大學中國藥學研究所碩士班學位論文, , 1-90.
27.Kim, H. W., Cho, S. J., Kim, B. Y., Cho, S. I., & Kim, Y. K. (2010). Pogostemon cablin as ROS scavenger in oxidant-induced cell death of human neuroglioma cells. Evidence-Based Complementary and Alternative Medicine : ECAM, 7(2), 239-247.
28.Singh, G., Singh, O. P., Prasad, Y., De Lampasona, M., & Catalan, C. (2002). Studies on essential oils, part 33: Chemical and insecticidal investigations on leaf oil of coleus amboinicus lour. Flavour and Fragrance Journal, 17(6), 440-442.
29.Xu, J., Zhou, F., Ji, B., Pei, R., & Xu, N. (2008). The antibacterial mechanism of carvacrol and thymol against escherichia coli. Letters in Applied Microbiology, 47(3), 174-179.
30.Braga, P. C., Dal Sasso, M., Culici, M., Bianchi, T., Bordoni, L., & Marabini, L. (2006). Anti-inflammatory activity of thymol: Inhibitory effect on the release of human neutrophil elastase. Pharmacology, 77(3), 130-136.
31.Esmaeili, A., & Khodadadi, A. (2012). Antioxidant activity of a solution of thymol in ethanol. Zahedan Journal of Research in Medical Sciences, 14(7), 14-18.
32.Razzaque, A., & Ellis, B. (1977). Rosmarinic acid production in coleus cell cultures. Planta, 137(3), 287-291.
33.Kintzios, S., Nikolaou, A., & Skoula, M. (1999). Somatic embryogenesis and in vitro rosmarinic acid accumulation in salvia officinalis and S. fruticosa leaf callus cultures. Plant Cell Reports, 18(6), 462-466.
34.Zhang, J. (2013). Chemical engineering III CRC Press.
35.Jeong, J. B., Choi, J., Lou, Z., Jiang, X., & Lee, S. (2013). Patchouli alcohol, an essential oil of pogostemon cablin, exhibits anti-tumorigenic activity in human colorectal cancer cells. International Immunopharmacology, 16(2), 184-190.
36.Jeong, J. B., Shin, Y. K., & Lee, S. (2013). Anti-inflammatory activity of patchouli alcohol in RAW264. 7 and HT-29 cells. Food and Chemical Toxicology, 55, 229-233.
37.Wu, C. S., Chen, Y. J., Chen, J. J., Shieh, J. J., Huang, C. H., Lin, P. S., et al. (2012). Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine : ECAM, 2012, 818261.
38.Becker, W. M., Kleinsmith, L. J., Hardin, J., & Raasch, J. (2003). The world of the cell Benjamin Cummings San Francisco.
39.Harper, J., & Adams, P. (2001). Cyclin-dependent kinases. Chemical Reviews, 101(8), 2511-2526.
40.Tang, H., & Chen, C. Y. (2014). Drug design of cyclin-dependent kinase 2 inhibitor for melanoma from traditional chinese medicine. BioMed Research International, 2014
41.Hunter, T., & Pines, J. (1994). Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell, 79(4), 573-582.
42.Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A., & Dean, D. C. (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block rb functions as cells move through G1. Cell, 98(6), 859-869.
43.Reed, S. I., Bailly, E., Dulic, V., Hengst, L., Resnitzky, D., & Slingerland, J. (1994). G1 control in mammalian cells. Journal of Cell Science, 1994(Supplement 18), 69-73.
44.Elledge, S. J., Winston, J., & Harper, J. W. (1996). A question of balance: The role of cyclin-kinase inhibitors in development and tumorigenesis. Trends in Cell Biology, 6(10), 388-392.
45.Sherr, C. J., & Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes and Development, 9(10), 1149-1163.
46.Harper, J. W., Elledge, S. J., Keyomarsi, K., Dynlacht, B., Tsai, L. H., Zhang, P., et al. (1995). Inhibition of cyclin-dependent kinases by p21. Molecular Biology of the Cell, 6(4), 387-400.
47.Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., & Elledge, S. J. (1993). The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 75(4), 805-816.
48.Lee, M. H., Reynisdottir, I., & Massague, J. (1995). Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes & Development, 9(6), 639-649.
49.Matsuoka, S., Edwards, M. C., Bai, C., Parker, S., Zhang, P., Baldini, A., et al. (1995). p57KIP2, a structurally distinct member of the p21CIP1 cdk inhibitor family, is a candidate tumor suppressor gene. Genes & Development, 9(6), 650-662.
50.Polyak, K., Lee, M., Erdjument-Bromage, H., Koff, A., Roberts, J. M., Tempst, P., et al. (1994). Cloning of p27 Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 78(1), 59-66.
51.Toyoshima, H., & Hunter, T. (1994). p27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to p21. Cell, 78(1), 67-74.
52.Xiong, Y., Hannon, G. J., Zhang, H., Casso, D., Kobayashi, R., & Beach, D. (1993). p21 is a universal inhibitor of cyclin kinases. Nature, 366(6456), 701-704.
53.Guan, K. L., Jenkins, C. W., Li, Y., Nichols, M. A., Wu, X., O''Keefe, C. L., et al. (1994). Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes & Development, 8(24), 2939-2952.
54.Hirai, H., Roussel, M. F., Kato, J. Y., Ashmun, R. A., & Sherr, C. J. (1995). Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6. Molecular and Cellular Biology, 15(5), 2672-2681.
55.Koh, J., Enders, G. H., Dynlacht, B. D., & Harlow, E. (1995). Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition.
56.53.Lukas, J., Parry, D., Aagaard, L., Mann, D. J., Bartkova, J., Strauss, M., et al. (1995). Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16.
57.Medema, R. H., Herrera, R. E., Lam, F., & Weinberg, R. A. (1995). Growth suppression by p16ink4 requires functional retinoblastoma protein. Proceedings of the National Academy of Sciences of the United States of America, 92(14), 6289-6293.
58.Okamoto, A., Demetrick, D. J., Spillare, E. A., Hagiwara, K., Hussain, S. P., Bennett, W. P., et al. (1994). Mutations and altered expression of p16INK4 in human cancer. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 11045-11049.
59.Serrano, M., Gomez-Lahoz, E., DePinho, R. A., Beach, D., & Bar-Sagi, D. (1995). Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science (New York, N.Y.), 267(5195), 249-252.
60.Shapiro, G. I., Park, J. E., Edwards, C. D., Mao, L., Merlo, A., Sidransky, D., et al. (1995). Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. Cancer Research, 55(24), 6200-6209.
61.Stone, S., Dayananth, P., Jiang, P., Weaver-Feldhaus, J. M., Tavtigian, S. V., Cannon-Albright, L., et al. (1995). Genomic structure, expression and mutational analysis of the P15 (MTS2) gene. Oncogene, 11(5), 987-991.
62.Hartwell, L. H. (2002). Nobel lecture: Yeast and cancer. Bioscience Reports, 22(3), 373-394.
63.Smith, M. L., & Fornace, A. J. (1996). Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis. Mutation Research/Reviews in Genetic Toxicology, 340(2), 109-124.
64.Lockshin, R. A., & Beaulaton, J. (1974). Programmed cell death. Life Sciences, 15(9), 1549-1565.
65.Porter, A. G., & Jänicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, 6(2), 99-104.
66.Cain, K., Bratton, S. B., Langlais, C., Walker, G., Brown, D. G., Sun, X. M., et al. (2000). Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. The Journal of Biological Chemistry, 275(9), 6067-6070.
67.Salvesen, G. S., & Dixit, V. M. (1999). Caspase activation: The induced-proximity model. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 10964-10967.
68.Candé, C., Cohen, I., Daugas, E., Ravagnan, L., Larochette, N., Zamzami, N., et al. (2002). Apoptosis-inducing factor (AIF): A novel caspase-independent death effector released from mitochondria. Biochimie, 84(2), 215-222.
69.van Loo, G., Schotte, P., Van Gurp, M., Demol, H., Hoorelbeke, B., Gevaert, K., et al. (2001). Endonuclease G: A mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death and Differentiation, 8(12), 1136-1142.
70.Weinert, T. A., & Hartwell, L. H. (1988). The RAD9 gene controls the cell cycle response to DNA damage in saccharomyces cerevisiae. Science (New York, N.Y.), 241(4863), 317-322.
71.Lieberman, H. B. (2006). Rad9, an evolutionarily conserved gene with multiple functions for preserving genomic integrity. Journal of Cellular Biochemistry, 97(4), 690-697.
72.Dang, T., Bao, S., & Wang, X. (2005). Human Rad9 is required for the activation of S‐phase checkpoint and the maintenance of chromosomal stability. Genes to Cells, 10(4), 287-295.
73.Sørensen, C. S., Syljuåsen, R. G., Lukas, J., & Bartek, J. (2004). ATR, claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle, 3(7), 939-943.
74.Komatsu, K., Miyashita, T., Hang, H., Hopkins, K. M., Zheng, W., Cuddeback, S., et al. (2000). Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-x L and promotes apoptosis. Nature Cell Biology, 2(1), 1-6.
75.Abreu, C. M., Kumar, R., Hamilton, D., Dawdy, A. W., Creavin, K., Eivers, S., et al. (2013). Site-specific phosphorylation of the DNA damage response mediator rad9 by cyclin-dependent kinases 1.
76.Gelmon, K. (1994). The taxoids: Paclitaxel and docetaxel. The Lancet, 344(8932), 1267-1272.
77.AR, A., & AA, E. (2015). Thymol and carvacrol prevent Cisplatin‐Induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. Journal of Biochemical and Molecular Toxicology, 29(4), 165-172.
78.Banjerdpongchai, R., & Khaw-On, P. (2013). Terpinen-4-ol induces autophagic and apoptotic cell death in human leukemic HL-60 cells. Asian Pacific Journal of Cancer Prevention, 14(12), 7537-7542.
79.Kim, J. H., Lee, B. J., Kim, J. H., Yu, Y. S., Kim, M. Y., & Kim, K. (2009). Rosmarinic acid suppresses retinal neovascularization via cell cycle arrest with increase of p21 WAF1 expression. European Journal of Pharmacology, 615(1), 150-154.
80.Hopkins, K. M., Wang, X., Berlin, A., Hang, H., Thaker, H. M., & Lieberman, H. B. (2003). Expression of mammalian paralogues of HRAD9 and Mrad9 checkpoint control genes in normal and cancerous testicular tissue. Cancer Research, 63(17), 5291-5298.
81.Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J., & Lukas, J. (2001). The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 410(6830), 842-847.
82.Matsuoka, S., Huang, M., & Elledge, S. J. (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science (New York, N.Y.), 282(5395), 1893-1897.
83.Brown, A. L., Lee, C. H., Schwarz, J. K., Mitiku, N., Piwnica-Worms, H., & Chung, J. H. (1999). A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3745-3750.
84.Blasina, A., Van de Weyer, I., Laus, M. C., Luyten, W. H., Parker, A. E., & McGowan, C. H. (1999). A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Current Biology, 9(1), 1-10.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊