跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 22:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭尉庭
研究生(外文):Wei-Ting Hsiao
論文名稱:以間葉幹細胞為基礎於非酒精性脂肪肝治療之前臨床研究
論文名稱(外文):Mesenchymal Stem Cell-Based Therapy for Non-alcoholic Fatty Liver Disease: A Preclinical Study
指導教授:李光申李光申引用關係
指導教授(外文):Oscar K. Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:83
中文關鍵詞:間葉幹細胞外吐小體非酒精性脂肪肝細胞治療代謝性疾病
外文關鍵詞:MSCexosomesNAFLDcell therapymetabolic disorder
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非酒精性脂肪肝(NAFLD)為常見之代謝性疾病。目前文獻報導指出人類間充質幹細胞(MSCs)能透過分泌生長因子等具生物活性成分以抑制免疫反應或加速組織修復。本研究利用MSC-based及MSC lysate-based兩種策略對NAFLD進行治療。其實驗組別於MSC-based組包含MSC、MSC分化之棕色脂肪細胞、MSC每日注射三種;MSC lysate-based組包含MSC lysate、MSC+MSC lysate兩種。研究結果指出,本實驗所用的飲食誘導之NAFLD動物模型,其疾病進程在兩策略各實驗組中均有明顯的回復,包含了Oil red O及天狼星紅染色結果,及各項與肝臟再生、纖維化、發炎反應有關的基因表現等。同時本研究也發現前述治療效果與血液中脂聯素(adiponectin)濃度及下游訊息傳導有關。進一步本研究也發現MSC-based治療策略能顯著增加血液HDL/LDL比值;MSC lysate-based治療策略能顯著增加實驗動物之葡萄糖耐受性及降低血液中GOT及GPT濃度。總結以上,本研究結果指出無論MSC或MSC lysate皆對於治療NAFLD有極大治療潛力。
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder. Recently, human mesenchymal stem cells (MSCs) have been reported to reduce inflammatory response and promote tissue regeneration through secretion of growth factors. Here we provide two therapeutic strategies for treating NAFLD by using MSC-based or MSC lysate-based approach. Results showed diet-induced NAFLD were ameliorated in our mice model in either MSC-based or MSC lysate-based approaches based on liver Oil red O and Sirius red stain results, and different extends of acceleration of regeneration, reversion of fibrosis and reduction of inflammation were also showed in the liver. And we also discovered adiponectin-induced correction of metabolic disorder in either approaches. Besides, MSC-based approach can also restored the ratio of HDL/LDL; MSC lysate-based approach can increased glucose tolerance and provided hepatoprotection effect by reducing serum GOT and GPT level. These results showed that MSC-based and MSC lysate-based therapeutic approaches are strong potential candidates for NAFLD therapy.
Contents
中文摘要 i
Abstract ii
Contents iii
List of Tables v
List of Figures v
Abbreviation vii
Introduction - 1 -
1.1. Non-alcoholic fatty liver disease - 1 -
1.2. Mesenchymal stem cells - 5 -
1.3. Brown adipose tissue - 7 -
1.4. Motivation - 10 -
Materials and Methods - 11 -
1.5. Cell culture - 11 -
1.5.1. Culture maintenance and cell expansion - 11 -
1.5.2. Cell lysate preparation - 11 -
1.5.3. Brown adipocyte differentiation of MSCs - 12 -
1.6. Animal experiments - 12 -
1.6.1. Non-alcoholic fatty liver disease animal model - 12 -
1.6.2. Serum sample collection and preparation - 13 -
1.6.3. Tissue sample preparation for cryosection - 13 -
1.6.4. RNA sample preparation - 14 -
1.6.5. Intraperitoneal glucose tolerance test (IPGT test) - 14 -
1.6.6. Serum biochemical analysis - 15 -
1.6.7. Experiment group classification - 15 -
1.7. In Vitro analysis of disease status - 16 -
1.7.1. H &; E staining - 16 -
1.7.2. Oil red O staining - 16 -
1.7.3. Sirius red staining - 17 -
1.7.4. RT-PCR and qPCR - 17 -
1.7.5. Enzyme-linked immunosorbent assay (ELISA) - 18 -
Results - 19 -
1.8. Long term high fat diet feeding induces type 3 fatty liver disease. - 19 -
1.9. Paracrine effect improves brown adipocyte differentiation. - 21 -
1.10. Treatment strategies and group classification. - 22 -
1.11. Diet-induced obesity, hepatomegaly and hepatosteatosis were reversed by different extends in both approaches. - 22 -
1.12. Cell transplantation can increases HDL/LDL ratio and lysate injection can provide hepatoprotection in NAFLD animals. - 24 -
1.13. Different extends of mitogen response induced liver regeneration and maturation were induced by each approaches. - 25 -
1.14. MSCs had higher ability of correcting high fat diet-induced inflammation and ECM abnormality. - 27 -
1.15. Adiponectin up-regulation might be the cause of therapeutic effect in our model. - 30 -
1.16. Peroxisome proliferator-activated receptor α and γ might be the key factors of reversing the status of HFD induced metabolic syndromes. - 30 -
1.17. The change of glucose transporter 4 shows the same trend with Pparγ in fat and muscle. - 33 -
1.18. Lysate injection dramatically improved the glucose tolerance. - 34 -
1.19. Different extends of reduction of T2D markers were exhibited in experiment groups. - 34 -
Discussion - 36 -
Conclusion - 39 -
Perspective - 40 -
References - 41 -
Tables - 48 -
Figures - 50 -
List of Tables
Table 1. Sequences of mouse qPCR primers - 48 -
List of Figures
Figure 1. Animal weight change during 30 weeks feeding. - 50 -
Figure 2. High fat diet induce obesity, liver steatosis and Glc intolerance in mice - 52 -
Figure 3. High fat diet causes expression change of several serum markers. - 54 -
Figure 4. Partial media change enhance beige adipocyte differentiation efficiency. - 57 -
Figure 5. Schematic illustration of the experiment approaches. - 58 -
Figure 6. The animal weight and the liver size change induced by either cell-based or lysate-based approaches. - 59 -
Figure 7. Oil red O stain results from each experiment groups. - 61 -
Figure 8. Serum biochemical analysis results from cell-based approach groups animals. - 63 -
Figure 9. Serum biochemical analysis results from lysate-based approach groups animals. - 65 -
Figure 10. Expression change of liver mitogen response, regeneration and maturation genes in cell-based approach groups. - 67 -
Figure 11. Expression change of liver mitogen response, regeneration and maturation genes in lysate-based approach groups. - 69 -
Figure 12. Expression change of pro-inflammatory, anti-inflammatory and fibrotic ECM genes in cell-based approach groups. - 71 -
Figure 13. Expression change of pro-inflammatory, anti-inflammatory and fibrotic ECM genes in lysate-based approach groups. - 73 -
Figure 14. Sirius red stain results from each experiment groups. - 75 -
Figure 15. Serum adiponectin expression change in both cell-based and lysate-based approaches. - 76 -
Figure 16. Expression change of liver Pparα and Pparγ gene expression levels in both cell-based and lysate-based approach groups. - 77 -
Figure 17. Expression change of fat Pparα and Pparγ gene expression levels in both cell-based and lysate-based approach groups. - 78 -
Figure 18. Expression change of muscle Pparα and Pparγ gene expression levels in both cell-based and lysate-based approach groups. - 79 -
Figure 19. Expression change of pancreas Pparα and Pparγ gene expression levels in both cell-based and lysate-based approach groups. - 80 -
Figure 20. Expression change of Glut4 gene expression in fat and muscle in both cell-based and lysate-based approach groups. - 81 -
Figure 21. IPGT test results in both cell-based and lysate-based approach groups. - 82 -
Figure 22. Expression change of T2D marker genes in liver in both cell-based and lysate-based approach groups. - 83 -


1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014 Feb 26;311(8):806-14. PubMed PMID: 24570244. Epub 2014/02/27. eng.
2. Lopez-Velazquez JA, Silva-Vidal KV, Ponciano-Rodriguez G, Chavez-Tapia NC, Arrese M, Uribe M, et al. The prevalence of nonalcoholic fatty liver disease in the Americas. Ann Hepatol. 2014 Mar-Apr;13(2):166-78. PubMed PMID: 24552858. Epub 2014/02/21. eng.
3. Farrell GC, Wong VW, Chitturi S. NAFLD in Asia--as common and important as in the West. Nat Rev Gastroenterol Hepatol. 2013 May;10(5):307-18. PubMed PMID: 23458891. Epub 2013/03/06. eng.
4. 衛生福利部國民健康署. 台灣地區各縣市98至100年18歲以上過重及肥胖盛行率 2014. Available from: http://www.hpa.gov.tw/BHPNet/Portal/File/ThemeDocFile/201210250500062111/台灣地區各縣市98至100年18歲以上過重及肥胖盛行率.pdf.
5. Hsiao TJ, Chen JC, Wang JD. Insulin resistance and ferritin as major determinants of nonalcoholic fatty liver disease in apparently healthy obese patients. Int J Obes Relat Metab Disord. 2004 Jan;28(1):167-72. PubMed PMID: 14610526. Epub 2003/11/12. eng.
6. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):686-90. PubMed PMID: 24042449. Epub 2013/09/18. eng.
7. Agopian VG, Kaldas FM, Hong JC, Whittaker M, Holt C, Rana A, et al. Liver transplantation for nonalcoholic steatohepatitis: the new epidemic. Ann Surg. 2012 Oct;256(4):624-33. PubMed PMID: 22964732. Epub 2012/09/12. eng.
8. Mahady SE, George J. Management of nonalcoholic steatohepatitis: an evidence-based approach. Clin Liver Dis. 2012 Aug;16(3):631-45. PubMed PMID: 22824485. Epub 2012/07/25. eng.
9. Dowman JK, Tomlinson JW, Newsome PN. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010 Feb;103(2):71-83. PubMed PMID: 19914930. Pubmed Central PMCID: 2810391. Epub 2009/11/17. eng.
10. Anstee QM, Day CP. The genetics of NAFLD. Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):645-55. PubMed PMID: 24061205. Epub 2013/09/26. eng.
11. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):330-44. PubMed PMID: 23507799. Epub 2013/03/20. eng.
12. LaBrecque DR, Abbas Z, Anania F, Ferenci P, Khan AG, Goh KL, et al. World gastroenterology organisation global guidelines: nonalcoholic Fatty liver disease and nonalcoholic steatohepatitis. J Clin Gastroenterol. 2014 Jul;48(6):467-73. PubMed PMID: 24921212. Epub 2014/06/13. eng.
13. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005 Jun;41(6):1313-21. PubMed PMID: 15915461. Epub 2005/05/26. eng.
14. Ratziu V. Pharmacological agents for NASH. Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):676-85. PubMed PMID: 24126564. Epub 2013/10/16. eng.
15. Chavez-Tapia NC, Rosso N, Tiribelli C. In vitro models for the study of non-alcoholic fatty liver disease. Curr Med Chem. 2011;18(7):1079-84. PubMed PMID: 21254970. Epub 2011/01/25. eng.
16. Nagarajan P, Mahesh Kumar MJ, Venkatesan R, Majundar SS, Juyal RC. Genetically modified mouse models for the study of nonalcoholic fatty liver disease. World J Gastroenterol. 2012 Mar 21;18(11):1141-53. PubMed PMID: 22468076. Pubmed Central PMCID: 3309902. Epub 2012/04/03. eng.
17. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968 Mar;6(2):230-47. PubMed PMID: 5654088. Epub 1968/03/01. eng.
18. Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42-60. PubMed PMID: 3068016. Epub 1988/01/01. eng.
19. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991 Sep;9(5):641-50. PubMed PMID: 1870029. Epub 1991/09/01. eng.
20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143-7. PubMed PMID: 10102814. Epub 1999/04/02. eng.
21. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7. PubMed PMID: 16923606. Epub 2006/08/23. eng.
22. Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004 Dec;40(6):1275-84. PubMed PMID: 15562440. Epub 2004/11/25. eng.
23. Bhandari DR, Seo KW, Sun B, Seo MS, Kim HS, Seo YJ, et al. The simplest method for in vitro beta-cell production from human adult stem cells. Differentiation. 2011 Oct;82(3):144-52. PubMed PMID: 21782317. Epub 2011/07/26. eng.
24. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004 Mar 1;103(5):1669-75. PubMed PMID: 14576065. Epub 2003/10/25. eng.
25. Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol. 2006 Oct;36(10):2566-73. PubMed PMID: 17013987. Epub 2006/10/03. eng.
26. Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong MH, Yoon SH, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med. 2014;46:e70. PubMed PMID: 24406319. Pubmed Central PMCID: 3909888. Epub 2014/01/11. eng.
27. Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics. 2013 May;13(10-11):1637-53. PubMed PMID: 23335344. Epub 2013/01/22. eng.
28. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):419-27. PubMed PMID: 19926330. Epub 2009/11/21. eng.
29. Carrion FA, Figueroa FE. Mesenchymal stem cells for the treatment of systemic lupus erythematosus: is the cure for connective tissue diseases within connective tissue? Stem Cell Res Ther. 2011;2(3):23. PubMed PMID: 21586107. Pubmed Central PMCID: 3152993. Epub 2011/05/19. eng.
30. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009 Apr 9;360(15):1509-17. PubMed PMID: 19357406. Pubmed Central PMCID: 2859951. Epub 2009/04/10. eng.
31. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009 Apr 9;360(15):1500-8. PubMed PMID: 19357405. Epub 2009/04/10. eng.
32. Schulz TJ, Tseng YH. Brown adipose tissue: development, metabolism and beyond. Biochem J. 2013 Jul 15;453(2):167-78. PubMed PMID: 23805974. Pubmed Central PMCID: 3887508. Epub 2013/06/29. eng.
33. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014 Jan;10(1):24-36. PubMed PMID: 24146030. Epub 2013/10/23. eng.
34. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013 Jan 2;123(1):215-23. PubMed PMID: 23221344. Pubmed Central PMCID: 3533266. Epub 2012/12/12. eng.
35. Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes. 2012 Mar;61(3):674-82. PubMed PMID: 22315305. Pubmed Central PMCID: 3282804. Epub 2012/02/09. eng.
36. . !!! INVALID CITATION !!!
37. Hubscher SG. Histological assessment of non-alcoholic fatty liver disease. Histopathology. 2006 Nov;49(5):450-65. PubMed PMID: 17064291. Epub 2006/10/27. eng.
38. Pisani DF, Djedaini M, Beranger GE, Elabd C, Scheideler M, Ailhaud G, et al. Differentiation of Human Adipose-Derived Stem Cells into "Brite" (Brown-in-White) Adipocytes. Front Endocrinol (Lausanne). 2011;2:87. PubMed PMID: 22654831. Pubmed Central PMCID: 3356055. Epub 2011/01/01. eng.
39. Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R, et al. Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells. 2009 Nov;27(11):2753-60. PubMed PMID: 19697348. Epub 2009/08/22. eng.
40. Leu JI, Crissey MA, Leu JP, Ciliberto G, Taub R. Interleukin-6-induced STAT3 and AP-1 amplify hepatocyte nuclear factor 1-mediated transactivation of hepatic genes, an adaptive response to liver injury. Mol Cell Biol. 2001 Jan;21(2):414-24. PubMed PMID: 11134330. Pubmed Central PMCID: 86585. Epub 2001/01/03. eng.
41. Desbois-Mouthon C, Wendum D, Cadoret A, Rey C, Leneuve P, Blaise A, et al. Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J. 2006 Apr;20(6):773-5. PubMed PMID: 16484330. Epub 2006/02/18. eng.
42. Stepniak E, Ricci R, Eferl R, Sumara G, Sumara I, Rath M, et al. c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Genes Dev. 2006 Aug 15;20(16):2306-14. PubMed PMID: 16912279. Pubmed Central PMCID: 1553212. Epub 2006/08/17. eng.
43. Mair M, Zollner G, Schneller D, Musteanu M, Fickert P, Gumhold J, et al. Signal transducer and activator of transcription 3 protects from liver injury and fibrosis in a mouse model of sclerosing cholangitis. Gastroenterology. 2010 Jun;138(7):2499-508. PubMed PMID: 20193684. Epub 2010/03/03. eng.
44. Kamiya A, Gonzalez FJ, Nakauchi H. Identification and differentiation of hepatic stem cells during liver development. Front Biosci. 2006;11:1302-10. PubMed PMID: 16368517. Epub 2005/12/22. eng.
45. Abelev GI. Alpha-fetoprotein in ontogenesis and its association with malignant tumors. Adv Cancer Res. 1971;14:295-358. PubMed PMID: 4107670. Epub 1971/01/01. eng.
46. Oikawa T, Kamiya A, Kakinuma S, Zeniya M, Nishinakamura R, Tajiri H, et al. Sall4 regulates cell fate decision in fetal hepatic stem/progenitor cells. Gastroenterology. 2009 Mar;136(3):1000-11. PubMed PMID: 19185577. Epub 2009/02/03. eng.
47. Baroni GS, D'Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, et al. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology. 1996 May;23(5):1189-99. PubMed PMID: 8621153. Epub 1996/05/01. eng.
48. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014 Mar;14(3):181-94. PubMed PMID: 24566915. Epub 2014/02/26. eng.
49. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006 May;20(5):847-56. PubMed PMID: 16453000. Epub 2006/02/03. eng.
50. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):654-9. PubMed PMID: 17486113. Epub 2007/05/09. eng.
51. Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, et al. Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One. 2009;4(3):e4722. PubMed PMID: 19266099. Pubmed Central PMCID: 2648987. Epub 2009/03/07. eng.
52. Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005 Jan;48(1):132-9. PubMed PMID: 15619075. Epub 2004/12/25. eng.
53. Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes. 2006 Sep;55(9):2562-70. PubMed PMID: 16936205. Epub 2006/08/29. eng.
54. Christiansen T, Paulsen SK, Bruun JM, Ploug T, Pedersen SB, Richelsen B. Diet-induced weight loss and exercise alone and in combination enhance the expression of adiponectin receptors in adipose tissue and skeletal muscle, but only diet-induced weight loss enhanced circulating adiponectin. J Clin Endocrinol Metab. 2010 Feb;95(2):911-9. PubMed PMID: 19996310. Epub 2009/12/10. eng.
55. Liu Y, Chewchuk S, Lavigne C, Brule S, Pilon G, Houde V, et al. Functional significance of skeletal muscle adiponectin production, changes in animal models of obesity and diabetes, and regulation by rosiglitazone treatment. Am J Physiol Endocrinol Metab. 2009 Sep;297(3):E657-64. PubMed PMID: 19531641. Epub 2009/06/18. eng.
56. Staiger H, Kaltenbach S, Staiger K, Stefan N, Fritsche A, Guirguis A, et al. Expression of adiponectin receptor mRNA in human skeletal muscle cells is related to in vivo parameters of glucose and lipid metabolism. Diabetes. 2004 Sep;53(9):2195-201. PubMed PMID: 15331527. Epub 2004/08/28. eng.
57. Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005 Jul;46(7):1369-79. PubMed PMID: 15834118. Epub 2005/04/19. eng.
58. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, et al. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes. 2005 Dec;54(12):3358-70. PubMed PMID: 16306350. Epub 2005/11/25. eng.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top