跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭仕元
研究生(外文):Cheng,Shih-Yuan
論文名稱:利用成長還原態氧化石墨烯/二氧化鈦奈米合成物應用在光催化上
論文名稱(外文):Growth of reduction Graphene/Titanium oxide nanocomposite employed in photocatalysis
指導教授:江海邦
指導教授(外文):Chiang, Hai-Pang
口試委員:藍永強曾賢德廖駿偉
口試委員(外文):Lan, Yung-ChiangTzeng, Shien-DerLiaw,Jiunn-Woei
口試日期:2014-07-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:水熱法奈米線二氧化鈦還原態氧化石墨烯銀鏡反應光催化
外文關鍵詞:hydrothermal reactionnanowireTitanium dioxidereduced Graphene oxidesilver mirror reactionphtocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用水熱法成長奈米線型態的二氧化鈦來做為光催化反應實驗的基礎材料。為了更進一步提升此種材料的光催化反應的效果,我們再結合擁有不錯的導電特性的還原態氧化石墨烯藉由其特性來使得二氧化鈦奈米線在進行光催化反應下所生成的電子電洞對降低其電子電洞複合率進而讓光催化特性更上一層樓。接著我們再利用銀鏡反應的化學方法將奈米等級的銀顆粒修飾到還原態氧化石墨烯/二氧化鈦奈米線的光催化材料上。由於銀顆粒和二氧化鈦之間表面電漿共振的效應使得其能夠延展光學吸收到可見光範圍內以及增加光致電洞的數量。
  此種光催化材料成功合成出來後我們利用拉曼光譜、傅式轉換紅外線光譜儀、紫外光/可見光光譜儀、掃描式電子顯微鏡、X射線繞射儀、X射線電子能譜儀來鑑定我們所合成的材料是否有成功。
  最後我們利用甲基藍溶液來對銀奈米粒子/還原態氧化石墨烯/二氧化鈦奈米線的光催化材料來做光催化效率的實驗,而實驗的結果也顯示出這種合成光觸媒能成功的分解掉甲基藍溶液,而效率也比純二氧化鈦奈米線或是還原態氧化石墨烯/二氧化鈦奈米線合成光觸媒來的好。

  In this study , we used hydrothermal reaction to grow the titanium oxide nanostructure for photocatalysis reaction . For improving the efficiency of photocatalysis reaction with the photocatalyst, we combined the reduce grapheme oxide (rGO) which has superior conductivity to upgrade the photocatalysis reaction of titanium oxide .Next , we used Silver mirror reaction to coat silver nanoparticles on the rGO-TiO2, which can promote the efficiency of the photocatalyst by surface plasmon resonance(SPR) between silver nanoparticles and TiO2 . Because the silver nanoparticles coated on TiO2 , which can extend the optical absorption to the visible region and increasing the number of photoexcited electrons.
  After the photocatalyst synthesized successfully , we confirmed it by Raman spectrum、Fourier transform infrared spectroscopy、UV-Vis spectrum、SEM、XRD、XPS.
  Finally we put the photocatalyst into Methyl blue solution for phtocatalysis experiment. The results of experiment shows the Methyl blue solution was decomposed by the photocatalyst successfullyand the efficiency is better than other three photocatalyst .

總目錄

中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
圖目錄 VI
表目錄 VIII
第一章序論 1
1-1 前言 1
1-2 動機 2
第二章文獻回顧 3
2-1 光觸媒的發展趨勢與應用 3
2-2 二氧化鈦 4
2-2-1 特性 4
2-2-2 晶格結構 4
2-3 光催化反應原理 5
2-4 侷域性表面電漿共振效應 6
2-5 還原態氧化石墨烯 7
2-5-1 石墨烯 7
2-5-2 氧化石墨烯 7
2-5-3 還原氧化石墨稀的方式 7
2-5-4 化學還原法 7
2-6 水熱法 9
2-6-1 起源 9
2-6-2 原理 9
2-6-3 合成裝置 9
2-6-4 特點 9

2-7 改質二氧化鈦光觸媒方法 10
2-8 銀鏡反應 11
第三章實驗方法 16
3-1 實驗藥品 16
3-2 實驗設備與儀器 16
3-3 實驗流程 18
3-4 製備光觸媒 19
3-5 還原態氧化石墨稀和二氧化鈦奈米線的結合 20
3-6 銀顆粒修飾還原態氧化石墨稀和二氧化鈦奈米線 21
3-7 利用拉曼光譜檢測 22
3-8 紫外/可見光光譜儀 24
3-9 傅式轉換紅外線光譜儀 25
3-10 X射線繞射儀 26
3-11 X射線電子能譜儀 27
3-12 掃描式電子顯微鏡 28
第四章結果與討論 29
4-1 材料鑑定 29
4-1-1 拉曼光譜分析 29
4-1-2 掃描式電子顯微鏡檢驗 32
4-1-3 X-ray繞射儀分析 34
4-1-4 傅式轉換紅外線光譜儀量測 35
4-1-5 X射線電子能譜儀量測 36
4-2 光催化實驗 39
第五章結論 47
參考文獻 48




圖目錄

圖2-1 各種光觸媒的能隙 12
圖2-2 二氧化鈦的各種結晶型態 12
圖2-3 金紅石與銳鈦礦的晶格結構(a)金紅石(b)銳鈦礦 13
圖2-4 光催化反應的各種可能途徑 13
圖2-5 二氧化鈦改質加入金屬後的光催化反應途徑 14
圖2-6 金屬、非金屬一起結合於光觸媒上的光催化反應 14
圖2-7 利用銀鏡反應所製做出具有反射效果的物品 15
圖3-2-1 (A)磁石攪拌加熱器(B) 超音波震洗機(C) 全波段氙燈 17
圖3-2-2 氙燈光源的波長範圍圖 17
圖3-4-1 (A)水熱合成反應釜;(B)DS-45定溫型烘箱 19
圖3-4-2 (A)烘烤結束後得到的結塊Na2Ti3O7 NWs(B)離子交換、過濾後滴在玻
片上的TiO2 NWs 20
圖3-4-3 (A)烘烤前的混合溶液;(B)烘烤後的混合溶液 20
圖3-4-4 (A)硝酸銀和氫氧化鈉的混合溶液;(B)混合攪拌後產生的沉澱物(C)加
入氨水後使得沉澱物消失;(D)滴入五滴葡萄糖後啟發反應 21
圖3-5-1 拉曼散射機制圖及公式 23
圖3-5-2 拉曼效應的簡化能階圖 23
圖3-5-3 (A)SERS的電磁效應(B)SERS的化學效應 23
圖3-5-4 CMR200共焦拉曼光譜顯微鏡 24
圖3-6-1 (A) UV-Vis 光譜儀內部光路圖(B) UV-Vis 光譜儀儀器圖 25
圖3-7-1 傅式轉換紅外線光譜儀 26
圖3-8-1 (A)晶體產生繞射時,布拉格關係式的幾何示意圖(B)消光條件的列表
(C)XRD儀器圖 27
圖3-9-1 XPS儀器圖 28
圖3-10-1 Hitachi SEM S-4800圖 28
圖4-1-1 二氧化鈦奈米線的拉曼光譜圖 30
圖4-1-2 還原前和還原後的氧化石墨烯的拉曼光譜圖比較 30
圖4-1-3 還原態氧化石墨烯結合二氧化鈦奈米線之拉曼光譜圖 31
圖4-1-4 將銀奈米粒子修飾上去後滴上R6G分子的拉曼光譜圖 31
圖4-1-5 (A)隨機分部的奈米線(B) 奈米線的直徑約為100~300nm 32
圖4-1-6 (A)15mM(B)30mM(C)40mM(D)銀奈米粒子大小約為50~100nm 33
圖4-1-7 (A)、(B) 銀奈米粒子於TiO2 – rGO上 33
圖4-1-8 (A)TiO2和GO的XRD圖(B)三種合成材料的XRD圖 34
圖4-1-9 GO和Ag-rGO-TiO2合成材料的FTIR光譜圖 36
圖4-1-10 (A)Ti 2p scan;(B)Ag 3d scan;(C)C 1s scan 37
圖4-2-1 為甲基藍加入Ag-rGO-TiO2光觸媒後照光經過十分鐘的顏色變化情形
40
圖4-2-2 當甲基藍溶液濃度為8ppm四種不同光觸媒對於甲基藍的光催化速率 40
圖4-2-3 在8ppm濃度下各種光觸媒對於溶液的分解速率(A)TiO2 NWs(B)Ag-
TiO2(C)rGO-TiO2(D)Ag-rGO-TiO2 41
圖4-2-4 將濃度加倍後甲基藍溶液顏色的變化情形 43
圖4-2-5 當甲基藍溶液濃度為16ppm四種不同光觸媒對於甲基藍的光催化速率
43
圖4-2-6 在16ppm濃度下各種光觸媒對於溶液的分解速率 (A)TiO2 NWs(B)
Ag-TiO2(C)rGO-TiO2(D)Ag-rGO-TiO2 44



表目錄

表2-1 二氧化鈦三種型態的物理化學性質 15
表3-3 實驗流程表 18
表4-2-1 甲基藍基本性質 39
表4-2-2 各光觸媒對於不同濃度甲基藍的反應時間常數 46
表4-2-3 光觸媒於8pmm濃度下每五分鍾量測的平均值及誤差值 46
表4-2-4 光觸媒於16pmm濃度下每五分鍾量測的平均值及誤差值 47


1. Akira Fujishima, Kenichi Honda , Electrochemical Photolysis of Water at a Semiconductor Electrode , Nature , Vol 238 , 1972

2. Akira Fujishima , Kazuhito Hashimoto , Yoshihiko Kikuchi , Kayano Sunada , Bactericidal and DetoxificationEffects of TiO2 Thin Film , Photocatalysts Enviromental science &; Technology , Vol. 32 , NO. 5 , 1998

3. Hua Tong, Shuxin Ouyang, Yingpu Bi , Naoto Umezawa, Mitsutake Oshikiri , Jinhua Ye, Nano-photocatalytic Materials: Possibilities and Challenges, Adv. Mater. 229-251, 24, 2012

4. Amy L. Linsebigler , Guangquan. Lu, and John T. Yates, Jr. , Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and SelectedResult ,Chem.Rev ,95,735
-758 ,1995

5. G.Williams , Brian.Seger ,Prashant V. Kamat , TiO2-Graphene nanocomposites . UV-assisted Photocatalytic Reduction of Graphene oxide , ACS Nano ,2 (7),1487-1491,2008

6. Wikipedia , Titanium dioxide , rutile、anatase、brookite

7. Xiaobo Chen, Samuel S. Mao, Titanium Dioxide Nanomaterials:
Synthesis,Properties, Modifications, and Applications ,Chem. Rev , 2891-2959, 107(7) , 2007

8. 宋大崙,洪長春,蔡旻樺,洪文琪,梁家榮,黃獻峰,奈米二氧化鈦製品之臺灣市場研究,2004

9. 吳民耀, 劉威志,表面電漿子理論與模擬,物理雙月刊28 , 486 , 2006

10. U. Fano , The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces ,J. Opt. Soc. Am. 31 , 213 , 1941

11. A.K. Geim and K.S. Novoselov , The rise of graphene, Nature Materials 6, 183 - 191 ,2007

12. Yanwu Zhu , Shanthi Murali , Weiwei Cai , Xuesong Li , Ji Won Suk , Jeffrey R. Potts , and Rodney S. Ruoff ,Graphene and Graphene Oxide: Synthesis,Properties, and Applications , Adv. Mater. 22 , 3906–3924 , 2010

13. Brodie. B , On the Atomic Weight of Graphite , Philosophical Transactions of the Royal Society of London , 149 , 249 ,1859

14. Songfeng Pei, Hui-Ming Cheng, The reduction of graphene oxide , Carbon , 50 , 321
0–3228 , 2012

15. Hyeon-Jin Shin, Ki Kang Kim, Anass Benayad, Seon-Mi Yoon, Hyeon Ki Park, In-Sun Jung, Mei Hua Jin, Hae-Kyung Jeong, Jong Min Kim,Jae-Young Choi, and Young Hee Lee, Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance , Adv. Funct . Mater, 19, 1987-1992, 2009

16. Sasha Stankovich , Dmitriy A. Dikin , Richard D. Piner , Kevin A. Kohlhaas ,Alfred Kleinhammes c, Yuanyuan Jia , Yue Wu ,SonBinh T. Nguyen , Rodney S. Ruoff , Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , Carbon , 45 , 1558-1565 , 2007

17. G.Williams , Brian.Seger ,Prashant V. Kamat , TiO2-Graphene nanocomposites . UV-assisted Photocatalytic Reduction of Graphene oxide , ACS Nano,2 (7), 1487-14
91,2008

18. Ming Zhou, Yuling Wang, Yueming Zhai, Junfeng Zhai, Wen Ren, Fuan Wang, and Shaojun Dong, Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films , Chem. Eur. J., 15, 6116 - 6120 , 2009

19. Yong Zhou, Qiaoliang Bao, Lena Ai Ling Tang, Yulin Zhong, and Kian Ping Loh , Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties ,Chem. Mater, 21, 2950-2956 , 2009

20. Sir Charles Lyell , A Manual of Elementary Geology , P603 , 1855

21. K. Byrappa and Masahiro Yoshimura ,Handbook of Hydrothermal Technology , 1-77 , 2001

22. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. , Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , Science , 263 ,269-271

23. Ying Yu , Jimmy C. Yu, Jia-Guo Yu, Yuk-Chun Kwok, Yan-Ke Che, Jin-Cai Zhao, Lu Ding, Wei-Kun Ge, Po-Keung Wong , Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes , Applied Catalysis A: General , 289 , 186-196 , 2005

24. Karran Woan, Georgios Pyrgiotakis, and Wolfgang Sigmund ,Photocatalytic Carbon-Nanotube–TiO2 Composites , Adv. Mater , 21 , 2233-2239,2009

25. C. Nethravathi, Michael Rajamathi , Chmically modified grapheme sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide,Carbon ,46 , 1994-1998,2008

26. Timothy N. Lambert, Carlos A. Chavez , Bernadette Hernandez-Sanchez, Ping Lu, Nelson S. Bell , Andrea Ambrosini , Thomas Friedman, Timothy J. Boyle ,David R. Wheeler, Dale L. Huber , Synthesis and Characterization of Titania − Graphene Nanocomposites , J. Phys. Chem. C, 113, 19812-19823 , 2009

27. O. Akhavan and E. Ghaderi, Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation , J. Phys. Chem. C, 113, 20214-20220 , 2009

28. Xiao-Yan Zhang, Hao-Peng Li, Xiao-Li Cui and Yuehe Lin, Graphene / TiO2 nanocomposites : synthesis, characterization and applicationin hydrogen evolution from water photocatalytic splitting, J. Mater. Chem.,20, 2801-2801. , 2010

29. Hao Zhang , Xiaojun Lv , Yueming Li , Ying Wangand Jinghong Li,P25- Graphene Composite as a High Performance Photocatalyst , ACSNano, 4, 380-386. , 2010

30. Yanhui Zhang , Zi-Rong Tang †, Xianzhi Fu , and Yi-Jun Xu, TiO2−Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO2−Graphene Truly Different from Other TiO2−Carbon Composite Materials ,ACS Nano, 4, 7303-7314, 2010.

31. Yun Hau Ng , Ian V. Lightcap , Kevin Goodwin, Michio Matsumura and Prashant V. Kamat, To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films?, J. Phys. Chem. Lett., 1, 2222-2227, 2010

32. Yanyuan Wen, Hanming Ding and Yongkui Shan, Preparation and visible light photocatalytic activity of Ag/TiO2/graphenenanocomposite , Nanoscale, 3, 44 11 – 4417 , 2011

33. Liangti Qu and Liming Dai , Novel Silver Nanostructures from Silver Mirror Reaction on Reactive Substrates ,J. Phys. Chem. B, 109, 13985-13990, 2005

34. Liyan Shen, Jian Ji, and Jiacong Shen , Silver Mirror Reaction as an Approach to Construct Superhydrophobic Surfaces with High Reflectivity,Langmuir, 24, 9962-9965 , 2008

35. Jih-Shang Hwang, Kuan-Yu Chen1, Shih-Jay Hong ,Shih-Wei Chen,Wun-Shing Syu, Chi-WenKuo, Wei-Yi Syu , Tai Yuan Lin, Hai-Pang Chiang, Surojit Chattopadhyay, Kuei-Hsien Chenand Li-Chyong Chen, The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates ,Nanotechnology, 21 , 025502 , 2010

36. B. L. Tian ,X. T. Zhang , S. X. Dai ,K. Cheng,Z. S. Jin , Y. B. Huang , Z. L. Du , G. T. Zou, and B. S. Zou, Strong Visible Absorption and Photoluminescence of Titanic Acid Nanotubes by Hydrothermal Metho ,J. Phys. Chem. C,112, 5361-5364,2008

37. Jianying Shi, Jun Chen, Zhaochi Feng, Tao Chen, Yuxiang Lian, Xiuli Wang, and Can Li, Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture , J. Phys. Chem. C, 111, 693-699,2007

38. Wenli Wang, Hong Lin,Jianbao Li,and Ning Wang,Formation of Titania Nanoarrays by Hydrothermal Reaction and Their Application in Photovoltaic Cells ,J. Am. Ceram. Soc,91,628–631,2008

39. Weijia Zhou, Hong Liu, Robert I. Boughton, Guojun Du, Jianjian Lin, Jiyang Wang and Duo Liu,One-dimensional single-crystalline Ti–Obased nanostructures :properties, synthesis, modifications and applications , Journal of Materials Chemistry,20,5993–6008,2010

40. Daniel R. Dreyer, Shanthi Murali,Yanwu Zhu,Rodney S. Ruoffb and Christopher W. Bielawski, Reduction of graphite oxide using alcohols , Journal ofMaterials Chemistry,21,3443-3447,2011

41. Antonino Sclafani, Jean-Marie Herrmann, Influence of Silver Deposits on the Photocatalytic Activity of Titania , J. Photochem. Photobiol,113, 181–188,1998

42. Yang Tian and Tetsu Tatsuma, Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles ,J. Am. Chem. Soc, 127, 7632–7637, 2005

43. J. Okumu, C. Dahmen, A. N. Sprafke, M. Luysberg, G. von Plessen and M. Wuttig, Photochromic silver nanoparticles fabricated by sputter deposition , J. Appl. Phys, 97, 094305, 2005

44. John R. Ferraro, Kazuo Nakamoto and Chris W. Brown,Introductory Raman Spectroscopy, Elsevier , 2003

45. 孫逸民,陳玉舜,趙敏勳,謝明學,儀器分析,全威圖書有限公司,48~80頁,2002

46. 方惠群,余曉東,史堅,儀器分析學習指導,科學出版社,30~89頁,2004

47. 林麗娟,X光繞射原理及其應用,工業材料86期,100-109,1994

48. David Briggs, M. P. Seah,Practical Surface Analysis: Auger and X-ray photoelectron spectroscopy,1990

49. W.C.Nixon, The General Principles of Scanning Electron Microscopy , JSTOR,261 , 45-50 , 2008

50. Xuan Pan,Yong Zhao,Shu Liu,Carol L. Korzeniewski,Shu Wang,§ and Zhaoyang Fan, Comparing Graphene-TiO2 Nanowire and Graphene-TiO2 Nanoparticle Composite Photocatalysts ,ACS Applied materials &; interfaces , 4 , 3944-3950 , 2012

51. Xiang Q, Yu J, Jaroniec , Enhanced photocatalytic H2-production activity of graphene-modifiedtitania nanosheets , Nanoscale , 3 , 3670–3678 , 2011

52. Jianfeng Shen, Bo Yan, Min Shi, Hongwei Ma, Na Liand Mingxin Ye , One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets ,J Mater Chem , 21 , 3415–3421 , 2011

53. Deng Chao-Yue, Zhang Gu-Ling, Zou Bin, Shi Hong-Long,Liang Yu-Jie, Li Yong-Chao, Fu Jin-Xiang, and Wang Wen-Zhong , TiO2/Ag composite nanowires for a recyclable surface enhanced Raman scattering substrate ,Chin. Phys.B, 2 2 ,106102-1~106102-6,2013

54. Yanyan Gao , Xipeng Pu , Dafeng Zhang , Guqiao Ding , Xin Shao , Jing Ma, Combustion synthesis of graphene oxide–TiO2 hybrid materials for photodegradation of methyl orange, Carbon, 50 , 4093-4101 , 2012

55. Lling-Lling Tan, Wee-Jun Ong, Siang-Piao Chaiand Abdul Rahman Mohamed , Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide ,Nanoscale research letters , 8 , 1-9 , 2013

56. O. Akhavan and E. Ghaderi , Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation , J. Phys. Chem. C , 113 , 20214-20220 , 2009

57. Dong Chan Lim, Ignacio Lopez-Salido, Young Dok Kim, Size selectivity for CO-oxidation of Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) , Surface Science , 598 , 96-103,2005


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top