跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/04 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹豐吉
研究生(外文):Feng-Chi Chan
論文名稱:低功率、低相位雜訊之雙頻帶電壓控制振盪器設計
論文名稱(外文):A Dual-Band LC-VCO with Low Power Low Phase Noise
指導教授:唐震寰唐震寰引用關係
指導教授(外文):Jenn-Hwan Tarng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:88
中文關鍵詞:電壓控制振盪器雙頻帶射頻
外文關鍵詞:vcodual-bandWiMAXRF
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的研究焦點著重於降低電壓控制振盪器其功率消耗及相位雜訊的設計。利用電流再利用的架構,可以使電壓控制振盪器在運作時的工作電流只需傳統型電壓控制振盪器運作時的一半而達到低功率消耗的目的。同時,我們也提出在NMOS的基極端外加電阻,此方法可有效降低NMOS熱雜訊進而降低電壓控制振盪器的相位雜訊。根據上述架構及方法,我們完成低功率、低相位雜訊2.5/3.5GHz之雙頻帶電壓控制振盪器。由量測結果(TSMC 0.18-μm 1P6M CMOS 製程),實作之IC均與模擬結果相近並達到預期之特性。在距離中心頻率10-kHz和1-MHz相位雜訊分別下降7.0dB和4.0dB。此設計的提供電壓為1.3V消耗功率為3.12mW,其工作頻率於2.5GHz和3.5GHz時,相位雜訊在距離中心頻率1 MHz分別為-121dBc/Hz和-117dBc/Hz。
The research described in this thesis focuses on the design of a low power consumption and phase noise LC-VCO. With the current-reused topology, the proposed LC-VCO can operate using only half amount of DC current compared with the conventional topologies to achieve low power consumption. Here, we also propose to add an external resistor at the substrate node of the NMOS transistor, which reduces the substrate thermal noise of the NMOS transistor effectively and the phase noise of the LC-VCO as well. Based on proposed topology and novel method, we implement a low power and low phase noise dual-band LC-VCO, which operates at 2.5/3.5 GHz. The proposed dual-band LC-VCO is implemented by TSMC 0.18-μm 1P6M CMOS process and the measured results are similar to simulation ones. Therefore, the performances of the proposed LC-VCO achieve anticipation. The result shows that the phase noise reduction is about 7.0 dB and 4.0 dB at 10-kHz and 1-MHz offset frequency, respectively. With only 1.3 V bias voltage and 3.12 mW power consumption, the proposed LC-VCO operates 2.5 GHz and 3.5 GHz with phase noise of -121 dBc/Hz and -117 dBc/Hz, respectively, at 1 MHz offset frequency.
Table of Contents

Abstract (Chinese).......................Ⅰ
Abstract (English).......................Ⅱ
Acknowledgement..........................Ⅳ
Table of Contents........................Ⅴ
List of Tables...........................Ⅶ
List of Figures..........................Ⅷ

Chapter 1 Introduction 1
1.1 Background and Problems…………………………………………1
1.2 Related Works………………………………………………………3
1.3 Thesis Organization………………………………………………4

Chapter 2 Basics of Voltage Controlled Oscillator (VCO) 5
2.1 Conventional LC-VCO Architectures……………………………5
2.2 Performance Parameters…………………………………………9
2.2.1 Phase Noise………………………………………………………9
2.2.2 Tuning Range……………………………………………………11
2.2.3 Tuning Sensitivity (KVCO)…………………………………12
2.2.4 Output power……………………………………………………13
2.2.5 Harmonic Rejection……………………………………………13
2.2.6 Power consumption……………………………………………13
2.3 Noise Model of VCO………………………………………………14
2.3.2 Time Invariant Model…………………………………………14
2.3.2 Time Variant Model……………………………………………16

Chapter 3 An Effective Way to Reduce the Thermal Noise of NMOS Transistors 22
3.1 Introduction………………………………………………………22
3.2 The Small-Signal Model of MOS Transistors………………24
3.3 Reducing Thermal Noise of NMOS………………………………26

Chapter 4 Design of a Dua-Band LC-VCO for 2.5/3.5 GHz
WiMAX 36
4.1 Introduction………………………………………………………36
4.2 Proposed Voltage controlled Oscillator Architecture…38
4.3 A Dual-Band LC-VCO for 2.5 GHz/3.5 GHz WiMAX……………47
4.4 Simulated and measured results………………………………59

Chapter 5 Conclusions 67

References………………………………………………………………68
Appendix A Basic Oscillator Theory………………………………73
Appendix B Classifications of Noises……………………………80
[1] Yue Yu, Long Bu, Shifeng Shen , Bahar Jalali-Farahani, Golsa Ghiaasi, Pengbei Zhang, and Mohammed Ismail, “A 1.8V fully integrated dual-band VCO for zero-IF WiMAX/WLAN receiver in 0.18μm CMOS,” IEEE Midwest symposium on Circuits and Systems, vol. 2, pp. 1259-1262, Aug. 2005.
[2] WiMAX Whitepaper, Worldwide Interoperability for Microwave Acess Forum. Available:http://www.wimaxforum.org/home/
[3] Hjijung Kim, Seonghan Ryu, Yujin Chung, Jinsung Choi, and Bumman Kim, “A low phase noise CMOS VCO with harmonic tuned LC tank,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2917-2924, July 2006.
[4] Yao-Haung Kao and Meng-Ting Hsu, “Theoretical analysis of low phase noise design of CMOS VCO,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, pp. 33-35, Jan. 2005.
[5] Xia Sun, Olivier Dupuis, Dimitri Linten, Geert Carchon, Philippe Soussan, Stefaan Decoutere, Walter De Radedt, and Eric Beyne, “High-Q above inductor using thin-film wafer-level packaging technology demonstrated on 90-nm RF-CMOS 5-GHz and 24-GHz LNA,” IEEE Adv. Packag., vol. 29, pp. 810-817, Nov. 2006.
[6] Babk Soltanian and Peter R. Kinget, “Tail current-shaping to improve phase noise in LC voltage-controlled oscillators,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1792–1802, Aug. 2006.
[7] Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, 5rd edition, Oxford. 2004.
[8] D. M. Pozar, Microwave Engineering, 3rd edition, John Wiley & Sons. 2005.
[9] Behzad Razavi, RF Microelectronics, Prentice Hall PTR. 1998.
[10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillator,” IEEE J. Solid-State Circuits, vol.33, pp. 179-194, Feb. 1998.
[11] D. B. Lesson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330. Feb. 1966.
[12] Bosco Leung, VLSI for wireless communication, Prentice Hall, 2002.
[13] 陳嘉倫,<射頻主被動元件與前端放大器之設計與實作>,國立暨南國際大學電機工程研究所碩士論文,2005年。
[14] Seok-Ju Yun, Chong-Yul Cha, Hyoung-Chul choi, and Sang-Gug Lee, “RF CMOS LC-oscillator with source damping resistors,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, pp. 511-513, Sep. 2006.
[15] Christian Enz, “An MOS transistor mode for RF IC design valid in all regions of operation,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 342-359, Jan 2002.
[16] Yo-Sheng Lin, “An Analysis of Small-Signal Source-Body Resistance Effect on RF MOSFETs for Low-Cost System-on-Chip (SoC) applications,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1442-1451, July 2005.
[17] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated circuits, Cambridge University Press, 1998.
[18] Yuhua Cheng, M. Jamal Deen, and Chih-Hung Chen, “MOSFET Modeling for RF IC Design,” IEEE Trans. Electron Devices, vol. 32, no. 7, pp. 1286-1303, July 2005.
[19] B. Razavi, Design of Analog CMOS Integrated Circuits, MCGRA-Hill, 2001.
[20] Yoshioki ISOBE, Kiyohito HARA, Dondee NAVARRO, Youichi TAKEDA, Tatsuya EZAKI, and Mitiko MIURA-MATTAUSCH, “Shot Noise Modeling in Metal-Oxide-Semiconductor Field Effect Transistors under Sub-Threshold Condition,” IEICE Trans. Electron., vol. E90-C, no. 4, pp. 885-894, April 2007.
[21] A. Bevilacqua and A. Niknejad, “An Ultra-wideband CMOS Low Noise Amplifier for 3.1-10.6 GHz Wireless Receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec.2004.
[22] Chang-Ching Wu, Mei-Fen Chou, Wen-Shen Wuen, and Kuei-Ann Wen, “A Low Power CMOS Low Noise Amplifier for Ultra-wideband Wireless Applications,” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 5063-5066, May 2005.
[23] Heydari. P and Lin, D., “A Performance Optimized CMOS Distributed LNA for UWB Receivers,” IEEE Custom Integrated Circuits Conference, vol. 39, no. 12, pp. 337-340, Sep. 2005.
[24] J. Gaubert, M. Egels, P. Pannier, and S. Bourdel, “Design Method for Broadband CMOS RF LNA,” Electron. Lett., 31st, vol. 41, no. 7, March 2005.
[25] Bo-Yang Chang and Christina F. Jou, “Design of 3.1 to 10.6 GHz Low-Voltage, Low-Power CMOS Low-Noise Amplifier for Ultra-wideband Receiver,” Microwave Conference Proceedings, Page(s):4, Dec. 2005.
[26] C.C. Meng, S.C. Tseng, Y. W. Chang, J. Y. Su and G..W. Huang, “4-GHz low-phase-noise transformer-based top-series GaInP/GaAs HBT QVCO,” IEEE MTT-S, pp. 1809-1812, Jun. 2006.
[27] J. Choi, S. Ryu, H. Kim, and B. Kim, “A low phase noise 2 GHz VCO using 0.13 μm CMOS process,” in Asia-Pacific Microw. Conf., Suzhou, China, Dec. 2005, pp. 2270-2272.
[28] Aly Ismail and Asad A. Abidi, “CMOS differential LC oscillator with suppressed UP-converted flicker noise,” IEEE Int. Solid-State Circuits Conf., vol. 1, pp. 98-99, 2003.
[29] Chan-Yong Jeong and Changsik Yoo, “5-GHz low-phase noise CMOS quadrature VCO,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 11, pp. 609-611, Nov. 2006.
[30] Nathan Sneed, “A 2-GHz CMOS LC-tuned VCO using switched-capacitors to compensate for bond wire inductance variation,” M.S. thesis, Dept. Electron. Eng., University of California, Berkeley, 2000.
[31] 施宜興,<具有快速頻率擷取之相位頻率偵測器與低抖動之頻率合成器設計>,國立交通大學電信工程研究所碩士論文,2006年。
[32] To-Po Wang, Chia-Chi Chang, Ren –Chieh Liu, Ming-Da Tsai, Kuo-Jung Sun, Ying-Tang Chang, Liang-Hung Lu, and Huei Wang, “A low-power oscillator mixer in 0.18μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no.1, pp. 88-95, Jan. 2004.
[33] K. C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652-660, Mar. 2005.
[34] J. Craninckx and M. Steyaert, Wireless CMOS Frequency Synthesizer Design, Norwell, MA: Kluwer, 1998.
[35] A. Hajimiri and T. H. Lee, “Phase noise in CMOS differential LC oscillators,” Proc. VLSI Circuits, vol. 11-13, pp. 48-51, June 1998.
[36] S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierlink, A.L. Lacaita, and V. Boccuzzi, “Frequency dependence on biased current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003-1011, Aug. 2002.
[37] Lin Jia, Jian Guo Ma, Kiat Seng Yeo, Xiao Peng Yu, Manh Anh Do, and Wei Meng Lim, “A 1.8-V 2.4/5.15-GHz Dual-Band LC VCO in 0.18-μm CMOS Technology,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 194-196, April 2006.
[38] D. Beak, J. Kim, and S. Hong, “A dual-band (13/22-GHz) VCO based on resonant mode switching,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 443.445, Oct. 2003.
[39] S.-M. Yim, “Demonstration of a switched resonator concept in a dual-ban monolithic CMOS LC-tuned VCO,” in Proc. IEEE Custom Integr. Circuits Conf., , pp. 205-208, May 2001.
[40] J. Tham, M. A. Margarit, B. Pregardier, C. D. Hull, R. Magoon, and F. Carr, “A 2.7-V 900 MHz/1.9-GHz dual-band transceiver IC for digital wireless communication,” IEEE, J. Solid-State Circuits, vol. 34, no. 3, pp. 286-291, Mar. 1999.
[41] J. W. M. Rogers, J. A. Macedo, and C. Plett, “The effect of varactor nonlinearity on the phase noise of completely integrated VCO,” IEEE, J. Solid-State Circuits, vol. 35, no. 9, pp. 1360-1367, Sep. 2000.
[42] A. Jayaraman, B. Terry, B. Fransis, P. Sullivan, M. Lindstrom, and J. O’s Connor, “A fully integrated broadband direct-conversion receiver for DBS applications,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 140-141, Feb. 2000.
[43] Seong-Mo Yim and Kenneth K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” Microw. Theory Tech., vol. 54, no. 1, pp. 74-81, Jan. 2006.
[44] 陳建樺,<雙頻帶2.4/5.2GHz壓控震盪器設計>,私立大同大學電機工程研究所碩士論文,2003年。
[45] M.A. Do, R. Zhao, K.S. Yeo, J.G. Ma, ”1.5V 1.8GHz bandpass amplifier,” in IEEE Proceedings-Circuits, Devices and System, vol. 147, no. 321-33, Dec. 2000.
[46] Giuseppe De AStis, David Cordeau, Jean-Marie Paillot, and Lucian Dascalescu, “A 5-GHz fully integrated full PMOS low-phase-noise LC-VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 2087–2091, Oct. 2005.
[47] Shao-Hua Lee, Yun Hsueh Chuang, Sheng-Lyang Jang, and Chien-Cheng Chen, ”Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wirelsess Compon. Lett., vol. 17, no. 2, pp. 145-147, Feb. 2007.
[48] Hyunchol Shin, Zhiwei Xu, and M. Frank Chang, “A 1.8-V 6/9-GHz reconfigurable dual-band quadrature LC VCO in SiGi BiMOS Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1028–1032, Jun. 2003.
[49] 梁清標,<應用於無線通訊射頻接收機之電路研製>,私立元智大學通訊工程研究所碩士論文,2005年。
[50] 許敦智,<0.18 μm互補式金氧半導體高頻壓控振盪與鎖相迴路設計>,國立交通大學電信工程研究所碩士論文,2006年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊