跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.29) 您好!臺灣時間:2025/11/30 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃汀華
研究生(外文):Huang, Din-Hwa
論文名稱:可調基底之稀疏貝式學習:演算法與應用
論文名稱(外文):Basis Adaptive Sparse Bayesian Learning : Algorithms and Applications
指導教授:吳文榕伍紹勳伍紹勳引用關係
指導教授(外文):Wu, Wen-RongWu, Sau-Hsuan
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:120
中文關鍵詞:稀疏貝式學習法感知無線系統壓縮感測頻譜估測
外文關鍵詞:sparse Bayesian learningcognitive radio systemscompressive sensingspectrum sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:561
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:2
稀疏貝式學習法利用貝式推理來求解,是一種被廣泛使用的壓縮感測法。在這種做法中,基底函數通常會被使用來以形成轉換矩陣。對於特定的應用上,可能存在一個模型已知參數卻未知的基底,可以把信號轉換到稀疏域。傳統的稀疏貝式學習法,基底的參數通常是假設已知的。這樣的假設可能不適用於真實世界,因而會大大影響傳統稀疏貝式學習法的效能。本篇論文提出了一個可調基底之稀疏貝式學習法,藉由輪流反覆地估測基底參數與系統參數來解決此問題。我們亦探討可能的應用。
首先我們將之應用於感知無線系統,探討合作式頻譜估測的問題。我們知道感知無線系統裏除了頻譜的稀疏性外,空間的稀疏性也能被利用來進一步加強頻帶的使用效率。為了達到此目的,次級使用者必須知道首要使用者基地台的位置以及信號強度分布。在此我們將此問題指稱為無線信號源的定位與功率傳播分布圖的重建。傳統的方式是利用一個路徑損耗模型來近似使用者基地台的功率衰減,並且假設使用者基地台的位置坐落於某些格點上。然而,路徑損耗模型的參數必須事先得知,並且估測的精準度會受限於格點的解析度。我們首先利用拉普拉斯函數來模式化使用者基地台的功率衰減,並且提出可調基底之稀疏貝式學習法來適當地估測相對應的參數。利用我們提出的方式,只需要知道少量的事前資訊。
為了進一步提升效能,我們結合了信號源數量檢測法,使得使用者基地台的數目可以精準地被估測。模擬結果顯示即使空間中的量測比例很低,我們所提出的演算法仍然有令人滿意的效能。雖然所提出的可調基底之稀疏貝式學習法可以有效地重建感知無線系統下的功率傳播分布圖,但它只能一次只能針對某一個單一頻帶重建,並沒有考慮到頻帶間的相關性。為了彌補這個不足,我們延伸拉普拉斯函數到多頻帶環境下。對一個多頻帶的拉普拉斯函數,我們採用區塊稀疏貝式學習法來有效的使用不同頻帶間的相關性。可調基底之稀疏貝式學習法因此被延伸成為可調基底之區塊稀疏貝式學習法,以同時重建多個頻帶的功率傳播分布圖。模擬顯示可調基底之區塊稀疏貝式學習法效能優於獨立使於不同頻帶之可調基底之稀疏貝式學習法。
最後,我們應用所提出的可調基底之區塊稀疏貝式學習法於第三代夥伴合作計劃長期演進系統下之定位問題。觀察到達時間差法被用來估計使用者元件的位置。它利用從三個不同基地台所估測到的到達時間來當作觀測值。對應於某基地台的到達時間可以藉由所估測時域信號響應的第一個係數延遲來得到。觀察到達時間差法主要的問題是在於藉由通道估測法求得之到達時間其估測精準度會受限於接收機取樣器的量化效應。由於無線通道普遍來說是稀疏的,我們可以將時域通道響應的估測模式化成一個壓縮感測的問題。用波形整形濾波器響應當作基底,我們可以利用所提出的可調基底之區塊稀疏貝式學習法來做通道估測,使用這種作法估得之到達時間將不受量化效應的影響。模擬顯示所提之可調基底區塊稀疏貝式學習法可顯著的提升到達時間估測精準度同時也改善定位效能。

Sparse Bayesian learning (SBL) is a widely used compressive sensing (CS) method that finds the solution by Bayesian inference. In this approach, a basis function is specified to form the transform matrix. For a particular application, it may exist a proper basis, with known model function and unknown parameters, which can convert the signal to a sparse domain. In conventional SBL, the parameters of the basis are assumed to be known as priori. This assumption may not be valid in real-world applications, and the efficacy of conventional SBL
approaches can be greatly affected. In this dissertation, we propose a basis-adaptive-sparse-Bayesian-learning (BA-SBL) framework, which can estimate the basis and system parameters, alternatively and iteratively, to solve the problem. Possible applications are also explored.
We start the work with the cooperative spectrum sensing problem in cognitive radio (CR) systems. It is known that in addition to spectrum sparsity, spatial sparsity can also be used to further enhance spectral utilization. To achieve that, secondary users (SUs) must know the locations and signal-strength distributions of primary-users’ base-stations (PUBSs), which is referred to as radio source positioning and power-propagation-map (PPM) reconstruction. Conventional approaches approximate PUBSs’ power decay with a path-loss model (PLM) and
assume PUBSs’ locations on some grid points. However, the parameters of the PLM have to be known in advance and the estimation accuracy is bounded by the resolution of the grid points.
We first employ a Laplacian function to model the PUBS power decay profile and propose a BA-SBL scheme to estimate corresponding parameters. With the proposed method, little priori information is required. To further enhance the performance, we incorporate source number
detection methods such that the number of the PUBSs can be precisely detected. Simulations show that the proposed algorithm has satisfactory performance even when the spatial measurement rate is low. While the proposed BA-SBL scheme can effectively reconstruct the PPM in
CR systems, it can only be applied in one frequency band at a time, and the frequency-band dependence is not considered. To fill the gap, we then extend the Laplacian function to the multiple-band scenario. For a multi-band Laplacian function, its correlation between different
bands is taken into consideration by a block SBL (BSBL) method. The BA-SBL is then modified and extended to a basis-adaptive BSBL (BA-BSBL) scheme, simultaneously reconstructing the PPMs of multiple frequency bands. Simulations show that BA-BSBL outperforms BA-SBL
applied to each band, independently.
Finally, we apply the proposed BA-BSBL procedure to the positioning problem in the 3rdgeneration-partnership-project (3GPP) long-term-evolution (LTE) systems. The observed-timedifference-of-arrival (OTDOA) method is used to estimate the location of user-element (UE).
It uses the estimated time-of-arrivals (TOAs) from three different base stations (BSs) as the observations. The TOA corresponding to a BS can be obtained by the first-tap delay of the time-domain channel response. The main problem of conventional OTDOA methods is that
the precision of TOA estimation, obtained by a channel estimation method, is limited by the quantization effect of the receiver’s sampler. Since wireless channels are generally spare, we can then formulate the time-domain channel estimation as a CS problem. Using the pulseshaping-filter response as the basis, we apply the proposed BA-BSBL procedure to conduct the
channel estimation, and the TOA can be estimated without quantization. Simulations show that the proposed BA-BSBL algorithm can significantly enhance the precision of TOA estimation and then improve the positioning performance.

Contents
Chinese Abstract i
Abstract iii
Acknowledgements v
Contents vii
List of Tables x
List of Figures xii
1 Introduction 1
2 Compressive-Sensing Problem 9
2.1 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 Basis Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Basis Pursuit Denoising . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Least Absolute Shrinkage and Selection Operator . . . . . . . . . . . . 15
2.1.5 Regularized Least Squares . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Bayesian Compressive Sensing : Sparse Bayesian Learning . . . . . . . . . . . 16
2.2.1 Fast Relevance Vector Machine . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Variational Relevance Vector Machine . . . . . . . . . . . . . . . . . . 19
2.3 Block Sparse Bayesian Learning . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 Cooperative Radio Source Positioning and Power Propagation Map Reconstruction
27
3.1 System Model and Background . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Cooperative Radio Source Sensing and Positioning through BA-SBL . . . . . . 33
3.2.1 Parameter Estimation with BA-SBL . . . . . . . . . . . . . . . . . . . 36
3.2.2 BA-SBL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Source Number Detection of BA-SBL . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Source Number Detection Based on the Mean of APP . . . . . . . . . 41
3.3.2 Bayesian Information Criterion Methods . . . . . . . . . . . . . . . . 42
3.3.3 F-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Sequential BA-SBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4 Cooperative Radio Source Sensing and Positioning in Multi-band Cognitive Network
65
4.1 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . . 66
4.2 Cooperative Radio Source Sensing and Locating through BA-BSBL . . . . . . 69
4.2.1 Parameter Estimation with BA-BSBL . . . . . . . . . . . . . . . . . . 70
4.2.2 BA-BSBL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5 Channel Estimation and Positioning in 3GPP LTE Systems 79
5.1 System and Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Channel Estimation . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.1 Signal Model for Channel Estimation . . . . . . . . . . . . . . . . . . 85
5.2.2 Channel Parameter Estimation by BA-BSBL . . . . . . . . . . . . . . 87
5.2.3 BA-BSBL Procedure . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 OTDOA Positioning in 3GPP LTE Systems . . . . . . . . . . . . . . . . . . . 93
5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Conclusions and Future Works 103
Bibliography 107
Appendix 115
A.1 Marginal and Conditional Gaussians . . . . . . . . . . . . . . . . . . . . . . . 115
A.2 Maximize the Evidence Function . . . . . . . . . . . . . . . . . . . . . . . 116
A.3 Fast Relevance Vector Machine . . . . . . . . . . . . . .. . . . . . . . . . . 118
A.4 Variational Relevance Vector Machine . . . . . . . . . . . . . . . . . . . . . . 118
A.5 Maximize the Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . 119

[1] E. J. Cand`es, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information,” IEEE Trans. on Inform.
Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.
[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. on Inform. Theory, vol. 52, no. 4, pp.
1289-1306, Apr. 2006.
[3] E. Cand`es and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse
Prob., vol. 23, no. 3, pp. 969-985, 2007.
[4] E. Cand`es and T. Tao, “Stable recovery of sparse overcomplete representations in the
presence of noise,” IEEE Trans. on Inform. Theory , vol. 52, no. 1, pp. 6-18, Jan. 2006.
[5] E. Cand`es and J. Romberg and T. Tao, “Stable signal recovery from incomplete and
inaccurate measurements,” Comm. Pure Appl. Math., vol. 59, no. 8, pp. 1207-1223, Aug.
2006.
[6] E. Cand`es and T. Tao, “Near-optimal signal recovery from random projections: universal
encoding strategies?,” IEEE Trans. on Inform. Theory, vol. 52, no. 12, pp. 5406-5425,
Dec. 2006.
[7] S.G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE
Trans. on Signal Proc., vol. 41, no. 12, pp. 3397-3415, Dec. 1993.
[8] Introduction to Linear Optimization, Athena Scientific, Feb. 1997.
[9] R. Tibshirani,“Regression shrinkage and selection via the Lasso,” J. Royal. Statist. Soc
B., vol. 58, no. 1, pp. 267-288, 1996.
[10] S. S. Chen and D. L. Donoho and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33-61, Dec. 1998.
[11] M. A. T. Figueiredo and R. D. Nowak and S. J. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems,” IEEE of
Journal of Selected Topics in Signal Proc., vol. 1, no. 4, pp. 586-597, Dec. 2007.
[12] D. J. C. Mackay, “Bayesian interpolation,” Neural Computation, vol. 4, no. 3, pp. 415-447, 1992.
[13] Pattern Recognition and Machine Learning, 2nd edition, Springer-Verlag, Oct. 2007.
[14] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” Journal of
Machine Learning Research, vol. 1, pp. 211-244, Jun. 2001.
[15] C. M. Bishop and M. E. Tipping, “Variational relevance vector machines,” in Proc. of
16th UAI, San Francisco, USA, Jun. 2000.
[16] M. E. Tipping and N. D. Lawrenceb, “Variational inference for student-t models: Robust
Bayesian interpolation and generalised component analysis,” Neurocomputing, vol. 69,
no. 1, pp. 123-141, 2005.
[17] S. Ji and Y. Xue and L. Carin, “Bayesian compressive sensing,” IEEE Trans. on Signal
Proc., vol. 56, no. 6, pp. 2346-2356, Jun. 2008.
[18] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios more personal,”
IEEE Personal Communications, vol. 6, no. 4, pp. 13-18, Aug. 1999.
[19] 3rd Generation Partnership Project (3GPP), Evolved Universal Terrestrial Radio Access
(E-UTRA): Physical channels and modulation TS 36.211, Sep. 2008. [Online] Available:
http://www.3gpp.org/ftp/Specs/html-info/36211.htm
[20] G. L. St¨uber and S.M. Almalfouh and D. Sale, “Interference analysis of TV-band whitespace,”
Proceedings of the IEEE, vol. 97, no. 4, pp. 741-754, Apr. 2009.
[21] T. Yucek, and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio
applications,” IEEE Com. Surveys and Tutorials, vol. 11, no. 1, pp. 116-130, First Quarter
2009.
[22] Z. Quan and S. Cui and H. V. Poor and A. H. Sayed, “Collaborative wideband sensing
for cognitive radios,” IEEE Signal Proc. Magazine, vol. 25, no. 6, pp. 60-73, Nov. 2008.
[23] Z. Tian and G. Giannakis, “Compressed sensing for wideband cognitive radios,” in Proc.
of IEEE ICASSP, Honolulu, Hawaii, Apr. 2007.
[24] S.-H. Wu and C.-Y. Yang and D.-H. Huang, “Cooperative sensing of wideband cognitive
radio: A multiple-hypothesis-testing approach,” IEEE Trans. on Vehicular Technology,
vol. 59, no. 4, pp. 1835-1846, May 2010.
[25] Cooperation in Wireless Networks: Principles and Applications, Springer, Apr. 2006.
[26] S.-Y. Shih and K.-C. Chen, “Compressed sensing construction of spectrum map for routing
in cognitive radio networks,” in Proc. of IEEE 73rd VTC, Budapest, Hungary, May 2011.
[27] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cognitive radio
networks by exploiting sparsity,” IEEE Trans. on Signal Proc., vol. 58, no. 3, pp. 1847-
1862, Mar. 2010.
[28] G. Mateos and J. A. Bazerque and G. B. Giannakis, “Distributed sparse linear regression,”
IEEE Trans. on Signal Proc., vol. 58, no. 10, pp. 5262-5276, Oct. 2010.
[29] J. A. Bazerque and G. Mateos and G. B. Giannakis, “Group-Lasso on splines for spectrum
cartography,” IEEE Trans. on Signal Proc., vol. 59, no. 10, pp. 4648-4663, Oct. 2011.
[30] E. Dall’Anese and J. A. Bazerque and G. B. Giannakis, “Group sparse Lasso for cognitive
network sensing robust to model uncertainties and outliers,” Physical Communication,
vol. 5, no. 2, pp. 161-172, Jun. 2012.
[31] S.-J. Kim and E. Dall’Anese and G.B. Giannakis, “Cooperative spectrum sensing for
cognitive radios using Kriged Kalman filtering,” IEEE Journal of Selected Topics in Signal
Proc., vol. 5, no. 1, pp. 24-36,Feb. 2011.
[32] E. Dall’Anese and S.-J. Kim and G.B. Giannakis, “Channel gain map tracking via distributed
Kriging,” IEEE Journal of Selected Topics in Signal Proc., vol. 60, no. 3, pp.
1205-1211, Mar. 2011.
[33] H. Li, “Reconstructing geographical-spectral pattern in cognitive radio networks,” in
Proc. of IEEE CrownCom, Budapest, Hungary, Jun. 2010.
[34] A. W. Min and K. G. Shin, “An optimal sensing framework based on spatial RSS-profile
in cognitive radio networks,” in Proc. of IEEE SECON, Rome, Italy, Jun. 2009.
[35] Wireless Communications : Principles and Practice, 2nd edition, Prentice Hall PTR, Jan. 2002.
[36] P. Stoica and Y. Sel´en and J. Li, “On information criteria and the generalized likelihood
ratio test of model order selection,” IEEE Signal Processing Letters, vol. 11, no. 10, pp.
794-797, Oct. 2004.
[37] S. S. Wilks, “The large-sample distribution of the likelihood ratio for testing composite
hypotheses,” Annals of Mathematical Statistics, vol. 9, no. 1, pp. 60-62, Mar. 1938.
[38] Z. Zhang and B. D. Rao, “Extension of SBL algorithms for the recovery of block sparse
signals with intra-block correlation,” IEEE Trans. on Signal Proc., vol. 61, no. 8, pp.
2009-2015 , Apr. 2013.
[39] W.-R.Wu, R.-C. Chiueh, and F.-S. Tseng, “"Channel estimation for OFDM systems with
subspace pursuit algorithm,” in Proc. of IEEE ICGCS, Seoul, Korea, 21-23 Jun., 2010.
[40] K. Schmeink, . Block, C. Knievel, and P. A. Hoeher, “Joint channel and parameter estimation
for combined communication and navigation using particle swarm optimization,” in
Proc. of IEEE 8th Workshop on the positioning navigation and communication (WPNC),
11-12 Mar., 2010.
[41] K. Schmeink, R. Adam, and P. A. Hoeher, “Influence of oversampling on channel parameter
estimation for joint communication and positioning,” in Proc. of IEEE 8th Workshop
on the positioning navigation and communication (WPNC), 7-8 Apr. 2011.
[42] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition,” in Proc. of
IEEE 27th Asilomar conference on Fignals, Systems and Computers, Los Alamitos, CA,
1-3 Nov. 1993, pp. 40-44.
[43] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,”
IEEE Trans. on Inform. Theory, vol. 55, no. 5, pp. 2230-2249 , May 2009.
[44] Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[45] M. E. Tipping, and A. Faul, “Fast marginal likelihood maximisation for sparse Bayesian
models,” in Proc. of the 9th International Workshop on Artificial Intelligence and Statistics,
Key West, FL, 3-6 Jan. 2003.
[46] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncertainty relations
and efficient recovery,” IEEE Trans. on Signal Proc., vol. 58, no. 6, pp. 3042a˛V3054,
Jun. 2010.
[47] E. Van Den Berg and M. Friedlander, “Probing the pareto frontier for basis pursuit solutions,”
SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890a˛V912, Nov. 2008.
[48] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,”
J. R. Statist. Soc. B, vol. 68, no. 1, pp. 49a˛V67, Feb. 2006.
[49] S.-H. Wu and H.-L. Chao and C.-H. Ko and S.-R. Mo and C.-T. Jiang and T.-L. Li and
C.-C. Cheng and C.-F. Liang, “A cloud model and concept prototype for cognitive radio
networks,” IEEE Comm. Magazine, vol. 19, no. 4, pp. 49-58, Aug. 2012.
[50] Federal Communications Commission, FCC 12-148, Dec. 2012.
[51] Institute of Electrical and Electronics Engineers, IEEE 802.22 Working Group on Wireless
Regional Area Networks (WRANs), Oct. 2010.
[52] E. Cand`es and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal
Proc. Magazine, vol. 25, no. 2, pp. 21-30, Mar. 2008.
[53] Information Theory, Inference, and Learning Algorithms, 2nd edition, Cambridge University
Press, 2004.
[54] Mathematical Statistics: Basic Ideas and Selected Topics, 2nd edition, Prentice Hall,
Sept. 2000.
[55] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical and
powerful approach to mulitiple testing,” J. Roy. Statist. Soc. Ser. B, vol. 57, pp. 289-300, 1995.
[56] G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics, vol. 6, no. 2,
pp. 461-464, Mar. 1978.
[57] Applied Multivariate Statistical Analysis, 4th edition, Prentice Hall, 1998.
[58] Electronic Communications Committee, ECC report 138 Measurements on the performance
of DVB-T receivers in the presence of interference from the mobile service, Jun. 2010.
[59] T. Camp and J. Boleng and V. Davies, “A survey of mobility models for ad hoc network
research,” Wireless Comm. and Mobile Computing (WCMC): Special Issue on Mobile Ad
Hoc Networking: Research, Trends, and Applications, vol. 2, no. 5, pp. 483-502, 2002.
[60] D.-H. Huang and S.-H. Wu and W.-R. Wu and P.-H. Wang, “Cooperative radio source
positioning and power map reconstruction: A sparse Bayesian learning approach,” IEEE
Trans. on Vehicular Technology, to appear.
[61] S. Cotter and B. D. Rao, “Sparse channel estimation via matching pursuit with application
to equalization,” IEEE Trans. on Comm., vol. 50, no. 3, pp. 374-377, Mar. 2002.
[62] I. J. Feverier, S. B. Gelfand, and M. P. Fitz, “Reduced complexity decision feedback
equalization for muItipath channels with large delay spread,” IEEE Trans. on Comm.,
vol. 47, no. 6, pp. 927-937, Jun. 1999.
[63] G. Auer and E. Karipidis, “"Pilot aided charmel estimation for OFDM: A separated approach
for smoothing and interpolation,” in Proc. of IEEE ICC, Seoul, Korea, 16-20 May, 2005.
[64] P. Y. Tsai and T. D. Chiueh, “"Frequency-domain interpolation-based charmel estimation
in pilot-aided OFDM systems,” in Proc. of IEEE VTC-Spring , 17-19 May, 2004.
[65] C. Drane, M. Macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Comm.
Magazine, vol. 36, no. 3, pp. 46-54, Apr. 1998.
[66] J. J. Caffery and G. L. Stuber, “Overview of radiolocation in CDMA cellular systems,”
IEEE Comm. Magazine, vol. 36, pp. 38-45, Apr. 1998.
[67] R. D. Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and H. Wymeersch,
“Location-aware communications for 5G networks: How location information can improve
scalability, latency, and robustness of 5G,” IEEE Signal Proc. Magazine, vol. 31,
pp. 102-112, Nov. 2014.
[68] R. Maiberger, D. Ezri, and M. Erlihson, “Location based beamforming,” in Proc. of
IEEE 26th Convention of Electrical and Electronics Engineers in Israel, pp. 184-187,
Nov. 2010.
[69] W. H. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Trans.
Aerosp. Electron. Syst., vol. 12, pp. 187-194, Mar. 1976.
[70] Winner channel, (2014, Sept.). 3GPP spatial channel model [Online]. Available at :
http://www.ist-winner.org
[71] 3rd Generation Partnership Project (3GPP), 3GPP 36.101 V12.5.0, Sept. 2014.
[72] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk, “Distributed
compressive sensing,” Preprint, Jan., 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top