跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱正承
研究生(外文):Chiou, Jeng-Cherng
論文名稱:奈米顆粒修飾銀奈米顆粒陣列與金屬增強螢光之研究
論文名稱(外文):Silver nanoparticle array decorated with nanoparticles and its application to Metal Enhanced Fluorescence
指導教授:江海邦
指導教授(外文):Chiang, Hai-Pang
口試委員:廖駿偉藍永強曾賢德
口試委員(外文):Liaw, Jun-WeiLan, Yung-ChiangTzeng, Shien-Der
口試日期:2014-07-21
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:76
中文關鍵詞:金屬增強螢光奈米求微影術
外文關鍵詞:Nanosphere LithographyMetal-enhanced fluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用奈米球微影術結合反應離子蝕刻,接著以熱蒸鍍分別製作出銀奈米陣列結構與修飾奈米顆粒銀奈米陣列結構。
實驗中以AFM與SEM影像觀察基板表面形貌,並以拉曼量測與吸收量測分析基板特性。再鍍上20nm SiO2 作為隔絕層,最後分別鍍上三種不同染料DCJTB、ADN、Alq3,分別放出紅、藍、綠三種光,研究修飾奈米顆粒銀奈米陣列結構與銀奈米陣列結構其光激發螢光與時間解析光激發螢光影響。
我們觀察到DCJTB、Alq3的PL強度與染料鍍於玻璃基板上分別增強為32.68倍和5.719倍而ADN 減弱為0.788倍,發光生命期也分別減少0.235ns、0.194 ns和2.491 ns,而修飾奈米顆粒與未修飾奈米顆粒基板相比有修飾奈米顆粒螢光強度分別增強分別為1.25倍、1倍和1.31倍,發光生命期分別減少0.049ns、0.041ns和0.87ns。
我們證明了修飾奈米顆粒之銀奈米尖錐陣列其局部表面電漿共振提高與螢光分子的震盪強度,故使其PL強度提高。

In this study, we fabricated periodic silver nanostructures by using nanosphere lithography (NSL) combined with reactive ion etching (RIE) and then using thermal evaporation decorate with nanoparticles on periodic silver nanostructures substrate.
In experimental,we use AFM and SEM to observed substrate topography,examine the characteristics of substrate by UV-vis and Raman measurements.A 20nm thick Sio2 is also deposited on the substrate as a buffer layer. Finally, we deposit a 75 nm fluorescent dye on the substrate for measure photoluminescence and time-resolve photoluminescence.Three different fluorescent materials are used separately: DCJTB、ADN、Alq3, which emits red, blue and green light respectively after excitation.
We observed the PL intensity of DCJTB、Alq3 was increased about 32.68 and 5.719 times but ADN was decreased 0.788 , and the lifetime could be shortened about 0.235、0.194 and 2.491 ns. Silver nanoparticle array decorated with nanoparticle substrate compared with silver nanoparticle array, the PL intensity of DCJTB、ADN、Alq3 was increased about 1.25、1、1.31 times, and the lifetime could be shortened about 0.049、0.041 and 0.87 ns.
We demonstrated that silver nanoparticle array decorated with nanoparticle
its local surface plasmon resonance vibration strength increases with fluorescent molecules, so its PL intensity increased.

摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XIII
第一章 序論 1
1-1 前言 1
1-2 金屬增強螢光簡介 1
1-3 表面電漿子簡介 1
1-4 研究動機與目的 2
第二章 理論 3
2-1 金屬與介電質介面的表面電漿模態 3
2-2 表面電漿子的色散關係式 4
2-3 局部表面電漿共振 9
2-4 螢光物質與金屬表面關係 11
2-5 提昇量子效率與電漿耦合激發 13
2-6 金屬表面電漿之激發 15
2-7 奈米球微影術結合反應離子蝕刻技術 17
2-8 拉曼散射理論 18
第三章 樣品製備與實驗方法 19
3-1 樣品製備 19
3-1-1 基板清洗 19
3-1-2 藥品配置 19
3-1-3 奈米球塗佈 20
3-1-4 蝕刻 22
3-1-5 蒸鍍 24
3-1-6 舉離 26
3-1-7 製作隔絕層 26
3-1-8 蒸鍍有機染料 26
3-2 實驗方法 27
3-2-1 螢光簡介 27
3-2-2 光激發螢光光譜 28
3-2-3 光激發螢光之實驗架構 28
3-2-4 時間解析光激發螢光光譜 29
3-2-5 時間解析光激發螢光之實驗架構 30
3-2-6 掃描式電子顯微鏡 31
3-2-7 共焦拉曼顯微儀 32
第四章 實驗結果與討論 33
4-1 奈米銀尖錐陣列與銀奈米顆粒修飾銀奈米尖錐陣列製作 33
4-1-1 反應離子蝕刻結果 34
4-1-2 奈米銀尖錐陣列與銀奈米顆粒修飾銀奈米尖錐陣列製作結果 35
4-2 奈米銀尖錐陣列與銀奈米顆粒修飾銀奈米尖錐陣列之反射率穿透率及吸收率43
4-3 奈米銀尖錐陣列與銀奈米顆粒修飾銀奈米尖錐陣列之拉曼光譜 45
4-4 奈米銀尖錐陣列與銀奈米顆粒修飾銀奈米尖錐陣列之光激發螢光光譜 48
4-4-1 DCJTB 之光激發螢光量測 49
4-4-2 ADN 之光激發螢光量測 52
4-4-3 Alq3之光激發螢光量測 55
4-5 奈米銀尖錐陣列與銀奈米顆粒修飾銀奈米尖錐陣列時間解析光激發螢光光譜 58
4-5-1 DCJTB之時間解析光激發螢光量測 59
4-5-2 ADN之時間解析光激發螢光量測 63
4-5-3 Alq3之時間解析光激發螢光量測 67
第五章 結論 71
參考文獻 72

[1]K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz and C.D. Geddes. “ Metal-enhanced fluorescence: an emerging tool in biotechnology’’,
Curr. Opin. Biotechnol, 16, 55 (2005) .
[2]K.H. Drexhage, “Influence of a dielectric interface on fluorescence decay time’’, Journal of luminescence 1, 2, 693-701 (1970) .
[3]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum’’,Philos. Mag, 4, 396-402(1902) .
[4]U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic’’, J. Opt, Soc. Am, 31, 213-222 (1941) .
[5]A. Hessel and A. A. Oliner, Appl. “A new theory of Wood’s anomalies on optical gratings’’,Opt, 4, 1275-1297 (1965) .
[6]C. Haynes and R.P. Van Duyne, “Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy’’, J. Phys. Chem. B, 107, 7426-7433 (2003) .
[7]D.L. Jeanmaire and R.P. Van Duyne, “Heterocyclic,Aromatiic,and Aliphatic Amines Adsorbed On The Anodized Silver Electrode ’’ J.Electroanal. Chem, 84,1-20 (1977) .
[8]A. Wokaun, “Surface enhancement of optical fields Mechanism and applications’’ Molec. Phys, 56, 1-33 (1985) .
[9]M. Moskovits, “Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals’’, J. Chem. Phys, 69, 4159, (1978) .
[10]J.C. Tsang, J.R. Kirtley and T.N. Theis, “Surface plasmon polariton contributions to Stokes emission from molecular monolayers on periodic Ag surfaces’’, Solid State Commun. 35, 667–670 (1980).
[11]R. G. Freeman, K, C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan, “Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates’’, Science, 267, 1629, (1995) .
[12]D. P. Tsai, C. W. Yang, W. C. Lin, F. H . Ho , H . J . Huang , M . Y . Chen, T. F. Tseng, C. H. Lee and C. J. Yeh , Jpn , “Dynamic Aperture of Near-Field Super Resolution Structures’’,J. Appl. Phys, 39, 982, (2000) .
[13]D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-fieldoptical structure’’, Appl. Phys. Lett, 77, 1413-1415(2000) .
[14]J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana , Y. Yamakawa, “Super-resolution near-field structure and signal enhancement by surface plasmons’’, Jpn. J. Appl. Phys. 40, 1831 (2001) .
[15]W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin and D.P. Tsai, “Near-field images of the AgOx-type super-resolution near–field structure’’ Appl. Phys. Lett, 78, 685-687, (2001) .
[16]D. A. Schultz, “Plasmon resonant particles for biological detection’’
Current Opinion in Biotechnology, 14, 13-22(2003) .
[17]O. Stenzel, A. Stendal, K. Voigtsberger and C. Von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters’’,Solar Energy Materials and Solar Cells , 37, 337-348 (1995) .
[18]M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, “ Metal cluster enhanced organic solar cells’’,Solar Energy Materials and Solar cells, 61, 97 (2000) .
[19]Y.Akimov,W.S. Koh,K.Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes”,Optics Express, 17, 12, 10195 (2009) .
[20]S. S. Kim, S. I. Na, J, D. Y. Kim and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles”,Appl Phys Lett , 93 , 073307 (2008)
[21]A. K ck, E. Gornik, M. Hauser and M. Beinstingl, “Strongly directional emission from AlGaAs/GaAs light-emitting diode”,Appl Phys Lett, 57, 2327 (1900) .
[22]H. Gao, F. Yan, Y. Zhang, J. Li, Y . Zeng and G. Wang. “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale”,Journal Of Applied Physics, 103 , 014314 (2008) .
[23]M. K. Kwon , J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes”, Adv. Mater, 20, 1253 (2008) .
[24]N. E. Hecker, R. A. Hopfel and N. Sawaki,“Enhanced light emission from a single quantum well located near a metal coated surface”,Physica E, 2, 98 (1998) .
[25]N. E. Hecker , R. A. Hopfel N. Sawaki, T. maier and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well”,Appl. Phys. Lett, 75, 1577 (1999) .
[26]W. L. Barnes, J. Light, “Surface plasmon-polariton mediated light emission through thin metal films”, Tech, 17, 2170 (1999) .
[27]S. Gianordoli, R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hank and L. Korte, “Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes”,Appl. Phys. Lett, 77, 2295 (2000) .
[28]J. Vuckovic, M. Loncar and A. Scherer, “Surface Plasmon Enhanced Light-Emitting Diode”, IEEE J. Quant. Elec, 36, 1131 (2000) .
[29]P.A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage and W. L. Barnes, “Surface Plasmon Mediated Emission from Organic Light Emitting Diodes”, Advanced Materials, 14, 1393 (2002) .
[30] I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra and S.P. Denbaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons”,Phys. Rev, B, 60, 11564 (1999) .
[31]A. Neogi, C. W. Lee, H.O.Everitt, T. Kuroda, A. Tackeuchi and E. Yablonvitch , “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling”,Phys. Rev. B,66,153305 (2002) .
[32]K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface plasmon light emitter structure and method of manufacture”,Nature Mater, 3,601 (2004)
[33]Z. Wang, Z. Chen, Z. Lan, X. Zhai, W. Du and Q.Gong, “Enhancement of Alq3 fluorescence by nanotextured silver films deposited on porous alumina substrates”,Applied Physics Letters, 90,151119 (2007)
[34]周辰峰. “利用光激發螢光光譜研究週期性銀奈米結構對染料之螢光增強特性’’國立臺灣海洋大學光電科學研究所,碩士論文 (2012) .
[35]T.C. Peng ,W.C. Lin,C.W. Chen ,H.P. Chiang. “Enhanced Sensitivity of Surface Plasmon Resonance Phase-Interrogation Biosensor by Using Silver Nanoparticles” Plasmonics 6,29(2011).
[36]Hsiu-Ming Yeh and Kuo-Shen Chen, “Development of a Digital-Convolution-Based Process Emulator for Three-Dimensional Microstructure Fabrication Using Electron-Beam Lithography”,IEEE Transactions on industrial electronics, 56, 4, 926, (2009)
[37]Canet Acikgoz, Xing Yi Ling, In Yee Phang, Mark A. Hempenius, David N. Reinhoudt, Jurriaan Huskens, and G. Julius Vancso, “Fabrication of Freestanding Nanoporous Polyethersulfone Membranes Using Organometallic Polymer Resists Patterned by Nanosphere Lithography”,Advanced Materials, 21, 20, 2064-2067,(2009)
[38]C. X. Cong, T. Yu, Z. H. Ni, L. Liu, Z. X. Shen, and W. Huang, “Fabrication of Graphene Nanodisk Arrays Using Nanosphere Lithography”,J. Phys. Chem. C, 113, 16, 6529, (2009)
[39]邱國斌, 蔡定平. “金屬表面電漿簡介”物理雙月刊(廿八卷二期) (2006) .
[40]H.Raether, Springer- Verlag, New York (1998) .
[41]吳民耀, 劉威志. “表面電漿子理論與模擬”物理雙月刊(廿八卷二期) (2006) .
[42]J. R. Lskowicz, Anal. Biocjem, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission”, 337, 171-194(2005) .
[43]R. R. Chance, A. Prock , R. Silbey, “Theory of laser-induced phenomena on conventional and phase-conjugated surfaces”, Adv. Chem. Phys, 37, 1 (1973) .
[44]A.Wei, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission”, Kluwer Academic Plenum Publishers, 337,173-200, (2004) .
[45]M. Scharte, R. Porath, T. Ohms, Aeschlimann, J. R. Krenn, H. Ditlbacher, F. R. Aussenegg, A. Liebsch, “Do Mie plasmons have a longer lifetime on resonance than off resonance? ”,Appl. Phys. B, 73, 305 (2001) .
[46]B.P. Maliwal, Z. Gryczynski, J.R. Lakowicz, J. Fluoresce, “Photostability of Cy3 and Cy5-Labeled DNA in the Presence of Metallic Silver Particles”,12 439-447(2002)
[47]J. S. Kang, G. Piszczek, J. R. Lakowicz, , “Enhanced emission induced by FRET from a long-lifetime, low quantum yield donor to a long-wavelength, high quantum yield acceptor”, J.Fluoresce,12, 97-103(2002) .
[48]A. Adams, R. W. Rendell, R.W. Garnett, P. K . Hansma, “Effect of metal film thickness on surface-atom coupling”,Opt. Commun, 34,417 (1980) .
[49]陳智偉. “奈米顆粒增強表面電漿共振生物感測器”國立臺灣海洋大學光電科學研究所,碩士論文 (2006) .
[50]E. M. Hicks, O. Lyandres, W. P. Hall, S. Zou, M. R. Glucksberg and R. P. Van Duyne, “Plasmonic Properties of Anchored Nanoparticles Fabricated by Reactive Ion Etching and Nanosphere Lithography”, J.Phys.Chem. C, 111,4116-4121(2007) .
[51]B. J. Y. Tan, C. H. Sow, K. Y. Lim, F. C. Cheong, G.L.Chong, A. T. S. Wee and C. K. Ong, “Fabrication of a two-dimensional periodic non-close-packed array of polystyrene particles”, J. Phys. Chem. B, 108,18575 (2004) .
[52]B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A.T.S. Wee and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing”, J. Phys. Chem. B, 109, 11100 (2005) .
[53]陳昌隆.“奈米銀顆粒陣列製作與表面增強拉曼散射之研究”,國立臺灣海洋大學光電科學研究所,碩士論文(2008).
[54]J. R. Ferraro, K. Nakamoto, “Introductory Raman Spectroscopy” Academic Press (1994)
[55]K. Kneipp, M. Moskovits, H. Kneipp, “Surface-Enhanced Raman Scattering” Springer, Berlin, (2006)
[56]M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles”, Appl. Optics 19, 3373-3388 (1980)
[57]林宗志. “奈米銀顆粒陣列之製作並應用於太陽能電池上抗反射層之研究” 國立臺灣海洋大學光電科學研究所,碩士論文(2010).
[58]蕭俊卿. “SAMCO RIE -10N 反應離子蝕刻機使用指導書” 國立臺灣大學奈米機電中心
[59]謝嘉民, 賴一凡, 林永昌, 枋志堯. ”光激發螢光量測的原理、架構及應用”,奈米通訊(十二卷二期)(2005)
[60]呂秉翰. “利用熱退火氧化銀薄膜製作寬頻表面店將增強光激發螢光基板”國立臺灣海洋大學光電科學研究所,碩士論文(2013)
[61]彭兆祥. “鑽石薄膜、氮化鈦與圖文淡化氮化鎵中間層對III-氮化物半導體光學性質影響之研究”國立臺灣海洋大學光電科學研究所
,碩士論文(2005)
[62]徐偉益“利用光激發螢光以及時間解析光激發螢光光譜研究含奈米銀顆粒陣列的三(8-羥基喹啉)鋁” 國立臺灣海洋大學光電科學研究所,碩士論文,(2009).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top