跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建元
研究生(外文):Jian-Yuan Huang
論文名稱:超超臨界電廠鍋爐T91抗潛變合金異質銲道之碳遷移研究
論文名稱(外文):Carbon Migration Study of T91 Creep-Resistant Dissimilar Weldment Applied in Ultra-Supercritical Boiler
指導教授:薛人愷
指導教授(外文):Ren-Kae Shiue
口試委員:蔡履文郭東昊
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:155
中文關鍵詞:T23T91304H309L異質銲道碳遷移脫碳區
DOI:10.6342/NTU201901110
相關次數:
  • 被引用被引用:1
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用兩種填料,如:T23與309L,分別將T91抗潛變合金與T23、304H進行異質鎢極氣體保護電極銲接製程。將通過非破壞性檢測的銲件,以線切割的方式取出適當尺寸的異質銲道,並進行後續熱處理。研究中主要探討鋼材在異質銲接時,在高溫長時間的負載下進行老化實驗,於異質銲道介面處發生碳遷移現象。異質銲道介面處為鉻濃度差異最為明顯之位置,使得不同活度的碳原子在高溫負載下往高合金端進行擴散,為使碳原子的溶解度達一平衡,低合金端的碳化物溶進基地中,造成脫碳區的生成。鑑定脫碳區的生成與否可藉光學顯微鏡與微硬度值的變化來進行驗證。
研究結果指出,在T23與T91的異質銲接當中,異質銲道經過回火後模擬老化十萬小時後,於T23銲道與T91熱影響區的熔融線交界處生成一連續且粗化的脫碳區,且微硬度值明顯下降;在304H與T91的異質銲接當中,異質銲道經過回火後模擬老化二十萬小時後,於309L銲道與T91熱影響區的熔融線交界處生成一連續的脫碳區,造成微硬度值下降,但脫碳區尺寸與微硬度值變化量與前者相比較不顯著。隨著老化時間的拉長,脫碳區的尺寸也隨之加增,降低T91銲件在超超臨界機組負載下應用的可靠性。
In this study, we use two kinds of fillers, such as T23 and 309L, to weld T23/T91 and 304H/T91 by TIG (Tungsten Inert Gas) separately. The quality of the weldment is examined by using NDT (Nondestructive Testing). Heat treatments are performed after specimens selected from wire cutting of the qualified weldments. In this study, during the aging test of dissimilar weldments under high temperature and long time, carbon migration will occur at the fusion line. Because there is the most obvious difference of chromium concentrations at the fusion line, it causes different activities of carbon atoms diffuse from low-alloy to high-alloy. To balance the solubility of carbon, the carbides dissolve into the base at low-alloy. This is the mechanism of formation of decarburization zone. Besides, decarburization zone can be confirmed by optical microscope and the variation of micro-hardness values.
In the T23/T23/T91 part, after PWHT and simulated aging test for 100,000 hours, the continuous and coarse decarburization zone forms at the interface of T23 weldment and T91 HAZ. The micro-hardness of decarburization zone decreases significantly. In 304H/309L/T91 part, after PWHT and simulated aging test for 200,000 hours, the continuous decarburization zone forms at the interface of 309L weldment and T91 HAZ. The micro-hardness of decarburization zone decreases. The change in the values of micro-hardness is not obvious compared with the former. With the longer time period in the aging test, the size of decarburization zone becomes larger. The formation of decarburization zone deteriorates the mechanical properties and reliability of the T91 weldment applied in ultra-supercritical boiler.
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xv
第一章 前言 1
第二章 文獻回顧 3
2.1 超超臨界電廠鍋爐機組介紹 3
2.2 接合方式簡介 4
2.2.1 機械連接 4
2.2.2 黏接 4
2.2.3 硬銲與軟銲 5
2.2.4 固態接合 6
2.2.5 銲接 7
2.2.6 鎢極氣體保護電弧銲 9
2.3 鉻鉬合金鋼 10
2.3.1 鉻鉬鋼之介紹 10
2.3.2 鉻鉬鋼之規範 11
2.3.3 鉻鉬鋼之應用與發展 11
2.3.4 鉻鉬鋼之強化機制 12
2.4 T91鉻鉬合金鋼之銲接特性 14
2.4.1 T91鉻鉬合金鋼銲接熱影響區 15
2.4.2 T91鉻鉬合金鋼銲後碳遷移現象 16
2.5 沃斯田鐵系不銹鋼 18
2.5.1 沃斯田鐵系不銹鋼之介紹 18
2.5.2 沃斯田鐵系不銹鋼之凝固反應 19
第三章 實驗方法 41
3.1 實驗流程 41
3.2 爐管材料異質銲接 42
3.3 異質銲接試片銲後熱處理 42
3.4 異質銲接試片老化實驗 43
3.5 異質銲接碳遷移分析 44
3.5.1 銲道組織金相觀察 44
3.5.2 銲道機械性質分析 45
3.5.3 銲道元素定量分析 46
3.5.4 銲道顯微結構分析 47
3.5.5 JMatPro模擬軟體 47
第四章 結果與討論 54
4.1 使用T23填料進行T23/T91異質銲接 54
4.1.1 T23/T23/T91銲道全圖金相組織觀察 54
4.1.2 T23/T23/T91銲道局部金相組織觀察 56
4.1.3 T23/T23/T91銲道橫截面微硬度分析 59
4.1.4 T23/T23/T91銲道橫截面元素定量分析 61
4.1.5 T23/T23/T91銲道介面顯微結構分析 63
4.2 使用309L填料進行304H/T91異質銲接 64
4.2.1 304H/309L/T91銲道全圖金相組織觀察 64
4.2.2 304H/309L/T91銲道局部金相組織觀察 66
4.2.3 304H/309L/T91銲道橫截面微硬度分析 69
4.2.4 304H/309L/T91銲道橫截面元素定量分析 72
4.2.5 304H/309L/T91銲道與介面顯微結構分析 73
第五章 結論 135
參考文獻 137
附錄 147
1.Xu, G., Xu, C., Yang, Y., Fang, Y., Zhou, L., & Zhang, K. (2014). Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant. Applied Energy, 134, 363-373.
2.Gibbons, T. B. (2013). Recent advances in steels for coal fired power plant: a review. Transactions of the Indian Institute of Metals, 66(5-6), 631-640.
3.Chui, E. H., & Gao, H. (2010). Estimation of NOx emissions from coal-fired utility boilers. Fuel, 89(10), 2977-2984.
4.Sudha, C., Terrance, A. L. E., Albert, S. K., & Vijayalakshmi, M. (2002). Systematic study of formation of soft and hard zones in the dissimilar weldments of Cr–Mo steels. Journal of Nuclear Materials, 302(2-3), 193-205.
5.Mayr, P., Schlacher, C., Siefert, J. A., & Parker, J. D. (2019). Microstructural features, Mechanical properties and high temperature failures of ferritic to ferritic dissimilar welds. International Materials Reviews, 64(1), 1-26.
6.台灣電力股份有限公司,歷年發電量結構,連線日期:2019/03/01,取自:https://www.taipower.com.tw
7.Masuyama, F. (1998). New developments in steels for power generation boilers. Advanced Heat Resistant Steel for Power Generation, 33-48.
8.Viswanathan, R., Coleman, K., & Rao, U. (2006). Materials for ultra-supercritical coal-fired power plant boilers. International Journal of Pressure Vessels and Piping, 83(11-12), 778-783.
9.Wang, C., Guo, Y., Guo, J., & Zhou, L. (2016). Microstructural changes and their effect on tensile properties of a Ni-Fe based alloy during long-term thermal exposure. Materials Science and Engineering: A, 670, 178-187.
10.Jacobson, D. M., & Humpston, G. (2005). Principles of brazing: ASM International, 1-46.
11.Goovaerts, K., Lambrechts, P., De Munck, J., Bergmans, L., & Van Meerbeek, B. (2002). Encyclopedia of Materials: Science and Technology. Elsevier science.
12.Schwartz, M. M. (1993). Introduction to brazing and soldering. ASM International, ASM Handbook, 6, 109-113.
13.Sekulić, D. P. (2013). Advances in Brazing: Science, Technology and Applications: Elsevier, 283.
14.Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: reports, 50(1-2), 1-78.
15.Derby, B., & Wallach, E. R. (1982). Theoretical model for diffusion bonding. Metal Science, 16(1), 49-56.
16.Lippold, J. C. (2014). Welding Metallurgy and Weldability. John Wiley & Sons.
17.Kou, S. (2003). Welding metallurgy. New Jersey, USA, 176.
18.Savage, W. F., Nippes, E. F., & Miller, T. W. (1976). Microsegregation in 70Cu-30Ni weld metal. Welding Journal, 55(6), 165s-173s.
19.Fisher, J. C. (1964). referenced by B. Chalmers. Principles of Solidification, John Wiley and Sons, New York, 105.
20.DeGarmo, E. P., Black, J. T., Kohser, R. A., & Klamecki, B. E. (1997). Materials and Process in Manufacturing. Upper Saddle River: Prentice Hall, 845-889.
21.Cary, H. B., & Helzer, S. C. (1979). Modern welding technology, 205.
22.Juang, S. C., & Tarng, Y. S. (2002). Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. Journal of Materials Processing Technology, 122(1), 33-37.
23.Yurioka, N., & Suzuki, H. (1983). Determination of necessary preheating temperature in steel welding.
24.Gibson, J. L., Jiménez, C., de Andrés, C. G., Danón, C. A., & Luppo, M. I. (2015). Evaluation of the Abnormal Grain Growth in an ASTM 213 Grade T91 Steel. Procedia Materials Science, 8, 1118-1126.
25.Maruyama, K., Sawada, K., & Koike, J. I. (2001). Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ international, 41(6), 641-653.
26.Abe, F., Horiuchi, T., Taneike, M., & Sawada, K. (2004). Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Materials Science and Engineering: A, 378(1-2), 299-303.
27.Cipolla, L., Danielsen, H. K., Venditti, D., Di Nunzio, P. E., Hald, J., & Somers, M. A. (2010). Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Materialia, 58(2), 669-679.
28.Aghajani, A., Richter, F., Somsen, C., Fries, S. G., Steinbach, I., & Eggeler, G. (2009). On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel. Scripta Materialia, 61(11), 1068-1071.
29.Sawada, K., Takeda, M., Maruyama, K., Ishii, R., Yamada, M., Nagae, Y., & Komine, R. (1999). Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Materials Science and Engineering: A, 267(1), 19-25.
30.Yamanouchi, N., Tamura, M., Hayakawa, H., Hishinuma, A., & Kondo, T. (1992). Accumulation of engineering data for practical use of reduced activation ferritic steel: 8% Cr-2%W-0.2%V-0.04%Ta-Fe. Journal of Nuclear Materials, 191, 822-826.
31.Wang, H. C., Somsen, C., Li, Y. J., Fries, S. G., Detemple, E., & Eggeler, G. (2019). Effect of Nb on improving the impact toughness of Mo-containing low-alloyed steels. Journal of Materials Science, 54(9), 7307-7321.
32.ASTM A213 – Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes.
33.Park, K., Kim, S., Chang, J., & Lee, C. (2012). Post-weld heat treatment cracking susceptibility of T23 weld metals for fossil fuel applications. Materials & Design, 34, 699-706.
34.Laha, K., Latha, S., Bhanu Sankara Rao, K., Mannan, S. L., & Sastry, D. H. (2001). Comparison of creep behaviour of 2.25 Cr–1Mo/9Cr–1Mo dissimilar weld joint with its base and weld metals. Materials Science and Technology, 17(10), 1265-1272.
35.David, S. A., Siefert, J. A., & Feng, Z. (2013). Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Science and Technology of Welding and Joining, 18(8), 631-651.
36.Bugge, J., Kjær, S., & Blum, R. (2006). High-efficiency coal-fired power plants development and perspectives. Energy, 31(10-11), 1437-1445.
37.Swindeman, R. W., Santella, M. L., Maziasz, P. J., Roberts, B. W., & Coleman, K. (2004). Issues in replacing Cr–Mo steels and stainless steels with 9Cr–1Mo–V steel. International Journal of Pressure Vessels and Piping, 81(6), 507-512.
38.Shankar, V., Valsan, M., Rao, K. B. S., Kannan, R., Mannan, S. L., & Pathak, S. D. (2006). Low cycle fatigue behavior and microstructural evolution of modified 9Cr–1Mo ferritic steel. Materials Science and Engineering: A, 437(2), 413-422.
39.Pandey, C., Mahapatra, M. M., Kumar, P., Saini, N., & Thakre, J. G. (2017). Nano-size particle evolution during heat treatment of P91 steel and their effect on micro hardness. Transactions of the Indian Institute of Metals, 1-8.
40.Wang, S. S., Chang, L., Wang, L., Wang, T., Wu, Y. D., Si, J. J. & Hui, X. D. (2015). Microstructural stability and short-term creep properties of 12Cr–W–Mo–Co steel. Materials Science and Engineering: A, 622, 204-211.
41.Paul, V. T., Saroja, S., & Vijayalakshmi, M. (2008). Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. Journal of Nuclear Materials, 378(3), 273-281.
42.Danielsen, H. K., & Hald, J. (2009). On the nucleation and dissolution process of Z-phase Cr (V, Nb) N in martensitic 12% Cr steels. Materials Science and Engineering: A, 505(1-2), 169-177.
43.Hättestrand, M., & Andren, H. O. (2001). Evaluation of particle size distributions of precipitates in a 9% chromium steel using energy filtered transmission electron microscopy. Micron, 32(8), 789-797.
44.Abbaschian, R., & Reed-Hill, R. E. (2008). Physical metallurgy principles. Cengage Learning.
45.Spigarelli, S., Cerri, E., Bianchi, P., & Evangelista, E. (1999). Interpretation of creep behaviour of a 9Cr–Mo–Nb–V–N (T91) steel using threshold stress concept. Materials Science and Technology, 15(12), 1433-1440.
46.Song, M., Sun, C., Fan, Z., Chen, Y., Zhu, R., Yu, K. Y., & Zhang, X. (2016). A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment. Acta Materialia, 112, 361-377.
47.Bhadeshia, H., & Honeycombe, R. (2017). Steels: Microstructure and Properties. Butterworth-Heinemann.
48.Han, B. Q., Mohamed, F. A., & Lavernia, E. J. (2003). Mechanical properties of iron processed by severe plastic deformation. Metallurgical and Materials Transactions A, 34(1), 71-83.
49.Speich, G. R., & Leslie, W. C. (1972). Tempering of steel. Metallurgical Transactions, 3(5), 1043-1054.
50.Gladman, T. (1999). Precipitation hardening in metals. Materials Science and Technology, 15(1), 30-36.
51.Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2017). Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments. Materials Science and Engineering: A, 685, 39-49.
52.Manugula, V. L., Rajulapati, K. V., Reddy, G. M., & Rao, K. B. S. (2017). Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states. Materials Science and Engineering: A, 698, 36-45.
53.Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2018). Some studies on P91 steel and their weldments. Journal of Alloys and Compounds, 743, 332-364.
54.Pandey, C., & Mahapatra, M. M. (2016). Effect of heat treatment on microstructure and hot impact toughness of various zones of P91 welded pipes. Journal of Materials Engineering and Performance, 25(6), 2195-2210.
55.Arivazhagan, B., Srinivasan, G., Albert, S. K., & Bhaduri, A. K. (2011). A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process. Fusion Engineering and Design, 86(2-3), 192-197.
56.Schäfer, L. (1998). Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel. Journal of Nuclear Materials, 258, 1336-1339.
57.Li, X., Cabrillat, M. T., & Lejeail, Y. (2006). Study of modified 9Cr-1Mo welds (No. CNIC--01856/2006).
58.Santella, M. L., Swindeman, R. W., Reed, R. W., & Tanzosh, J. M. (2001, July). Martensite formation in 9Cr-1Mo steel weld metal and its effect on creep behavior. In EPRI Conference on 9Cr Materials Fabrication and Joining Technologies.
59.Albert, S. K., Matsui, M., Watanabe, T., Hongo, H., Kubo, K., & Tabuchi, M. (2003). Variation in the Type IV cracking behaviour of a high Cr steel weld with post weld heat treatment. International Journal of Pressure Vessels and Piping, 80(6), 405-413.
60.Wang, Y., Kannan, R., & Li, L. (2016). Characterization of as-welded microstructure of heat-affected zone in modified 9Cr–1Mo–V–Nb steel weldment. Materials Characterization, 118, 225-234.
61.Pandey, C., & Mahapatra, M. M. (2016). Effect of groove design and post-weld heat treatment on microstructure and mechanical properties of P91 steel weld. Journal of Materials Engineering and Performance, 25(7), 2761-2775.
62.Mayr, P., & Cerjak, H. (2010). The impact of welding on the creep properties of advanced 9–12% Cr steels. Transactions of the Indian Institute of Metals, 63(2-3), 131-136.
63.Wang, Y., Kannan, R., & Li, L. (2016). Identification and characterization of intercritical heat-affected zone in as-welded Grade 91 weldment. Metallurgical and Materials Transactions A, 47(12), 5680-5684.
64.Wang, Y., Kannan, R., Zhang, L., & Li, L. (2017). Microstructural Analysis of the As-Welded Heat-Affected Zone of a Grade 91 Steel Heavy Section Weldment. Welding. J, 96(6), 203-219.
65.Yoshino, M., Mishima, Y., Toda, Y., Kushima, H., Sawada, K., & Kimura, K. (2008). Influence of normalizing heat treatment on precipitation behaviour in modified 9Cr–1Mo steel. Materials at High Temperatures, 25(3), 149-158.
66.DuPont, J. N. (2012). Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds. International Materials Reviews, 57(4), 208-234.
67.Christoffel, R. J., & Curran, R. M. (1956). Carbon migration in welded joints at elevated temperatures. Welding J. (NY), 35.
68.Sopoušek, J., & Foret, R. (2008). More sophisticated thermodynamic designs of welds between dissimilar steels. Science and Technology of Welding and Joining, 13(1), 17-24.
69.Kozeschnik, E., Pölt, P., Brett, S., & Buchmayr, B. (2002). Dissimilar 2· 25Cr/9Cr and 2Cr/0· 5CrMoV steel welds: Part 1: Characterisation of weld zone and numerical simulation. Science and Technology of Welding and Joining, 7(2), 63-68.
70.Wang, H. T., Wang, G. Z., Xuan, F. Z., Liu, C. J., & Tu, S. T. (2013). Local mechanical properties of a dissimilar metal welded joint in nuclear power systems. Materials Science and Engineering: A, 568, 108-117.
71.Smith, W. F. (1993). Structure and Properties of Engineering Alloys. McGraw-Hill.
72.Shankar, V., Gill, T. P. S., Mannan, S. L., & Sundaresan, S. (2003). Solidification cracking in austenitic stainless steel welds. Sadhana, 28(3-4), 359-382.
73.Kou, S. (2003). Welding metallurgy. New Jersey, USA, 223-226.
74.Elmer, J. W., Allen, S. M., & Eagar, T. W. (1989). Microstructural development during solidification of stainless steel alloys. Metallurgical Transactions A, 20(10), 2117-2131.
75.Takalo, T., Suutala, N., & Moisio, T. (1979). Austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 10(8), 1173-1181.
76.Suutala, N., Takalo, T., & Moisio, T. (1980). Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 11(5), 717-725.
77.Paupler, P. J. C. R., & Technology. (1988). GE Dieter. Mechanical Metallurgy. Mc Graw‐Hill Book Co., New York 1986. XXIII+ 751 p., DM 138.50, ISBN 0–07–016893–8. 23(2), 194.
78.Gale, W. F., & Totemeier, T. C. (2003). Smithells Metals Reference Book: Elsevier, 21-1.
79.Reed, S. J. (1998). Wavelength-dispersive x-ray spectrometry. In Modern Developments and Applications in Microbeam Analysis: Springer, 29-36.
80.Abe, F. (2008). Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Science and Technology of Advanced Materials, 9(1), 013002.
81.Sawada, K., Kubo, K., & Abe, F. (2003). Contribution of coarsening of MX carbonitrides to creep strength degradation in high chromium ferritic steel. Materials Science and Technology, 19(6), 732-738.
82.Ming, H., Zhang, Z., Wang, J., Han, E. H., & Ke, W. (2014). Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint. Materials Characterization, 97, 101-115.
83.Cao, J., Gong, Y., Zhu, K., Yang, Z. G., Luo, X. M., & Gu, F. M. (2011). Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Materials & Design, 32(5), 2763-2770.
84.Minami, Y., Kimura, H., & Ihara, Y. (1986). Microstructural changes in austenitic stainless steels during long-term aging. Materials Science and Technology, 2(8), 795-806.
85.Pavan, A. H. V., Vikrant, K. S. N., Ravibharath, R., & Singh, K. (2015). Development and evaluation of SUS 304H—IN 617 welds for advanced ultra supercritical boiler applications. Materials Science and Engineering: A, 642, 32-41.
86.Ji, Y. S., Park, J., Lee, S. Y., Kim, J. W., Lee, S. M., Nam, J. H. (2017). Long-term evolution of σ phase in 304H austenitic stainless steel: Experimental and computational investigation. Materials Characterization, 128, 23-29.
87.Handbook, M. (1990). Vol. 2. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 102.  
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top