|
1.Xu, G., Xu, C., Yang, Y., Fang, Y., Zhou, L., & Zhang, K. (2014). Novel partial-subsidence tower-type boiler design in an ultra-supercritical power plant. Applied Energy, 134, 363-373. 2.Gibbons, T. B. (2013). Recent advances in steels for coal fired power plant: a review. Transactions of the Indian Institute of Metals, 66(5-6), 631-640. 3.Chui, E. H., & Gao, H. (2010). Estimation of NOx emissions from coal-fired utility boilers. Fuel, 89(10), 2977-2984. 4.Sudha, C., Terrance, A. L. E., Albert, S. K., & Vijayalakshmi, M. (2002). Systematic study of formation of soft and hard zones in the dissimilar weldments of Cr–Mo steels. Journal of Nuclear Materials, 302(2-3), 193-205. 5.Mayr, P., Schlacher, C., Siefert, J. A., & Parker, J. D. (2019). Microstructural features, Mechanical properties and high temperature failures of ferritic to ferritic dissimilar welds. International Materials Reviews, 64(1), 1-26. 6.台灣電力股份有限公司,歷年發電量結構,連線日期:2019/03/01,取自:https://www.taipower.com.tw 7.Masuyama, F. (1998). New developments in steels for power generation boilers. Advanced Heat Resistant Steel for Power Generation, 33-48. 8.Viswanathan, R., Coleman, K., & Rao, U. (2006). Materials for ultra-supercritical coal-fired power plant boilers. International Journal of Pressure Vessels and Piping, 83(11-12), 778-783. 9.Wang, C., Guo, Y., Guo, J., & Zhou, L. (2016). Microstructural changes and their effect on tensile properties of a Ni-Fe based alloy during long-term thermal exposure. Materials Science and Engineering: A, 670, 178-187. 10.Jacobson, D. M., & Humpston, G. (2005). Principles of brazing: ASM International, 1-46. 11.Goovaerts, K., Lambrechts, P., De Munck, J., Bergmans, L., & Van Meerbeek, B. (2002). Encyclopedia of Materials: Science and Technology. Elsevier science. 12.Schwartz, M. M. (1993). Introduction to brazing and soldering. ASM International, ASM Handbook, 6, 109-113. 13.Sekulić, D. P. (2013). Advances in Brazing: Science, Technology and Applications: Elsevier, 283. 14.Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: reports, 50(1-2), 1-78. 15.Derby, B., & Wallach, E. R. (1982). Theoretical model for diffusion bonding. Metal Science, 16(1), 49-56. 16.Lippold, J. C. (2014). Welding Metallurgy and Weldability. John Wiley & Sons. 17.Kou, S. (2003). Welding metallurgy. New Jersey, USA, 176. 18.Savage, W. F., Nippes, E. F., & Miller, T. W. (1976). Microsegregation in 70Cu-30Ni weld metal. Welding Journal, 55(6), 165s-173s. 19.Fisher, J. C. (1964). referenced by B. Chalmers. Principles of Solidification, John Wiley and Sons, New York, 105. 20.DeGarmo, E. P., Black, J. T., Kohser, R. A., & Klamecki, B. E. (1997). Materials and Process in Manufacturing. Upper Saddle River: Prentice Hall, 845-889. 21.Cary, H. B., & Helzer, S. C. (1979). Modern welding technology, 205. 22.Juang, S. C., & Tarng, Y. S. (2002). Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. Journal of Materials Processing Technology, 122(1), 33-37. 23.Yurioka, N., & Suzuki, H. (1983). Determination of necessary preheating temperature in steel welding. 24.Gibson, J. L., Jiménez, C., de Andrés, C. G., Danón, C. A., & Luppo, M. I. (2015). Evaluation of the Abnormal Grain Growth in an ASTM 213 Grade T91 Steel. Procedia Materials Science, 8, 1118-1126. 25.Maruyama, K., Sawada, K., & Koike, J. I. (2001). Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ international, 41(6), 641-653. 26.Abe, F., Horiuchi, T., Taneike, M., & Sawada, K. (2004). Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Materials Science and Engineering: A, 378(1-2), 299-303. 27.Cipolla, L., Danielsen, H. K., Venditti, D., Di Nunzio, P. E., Hald, J., & Somers, M. A. (2010). Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel. Acta Materialia, 58(2), 669-679. 28.Aghajani, A., Richter, F., Somsen, C., Fries, S. G., Steinbach, I., & Eggeler, G. (2009). On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel. Scripta Materialia, 61(11), 1068-1071. 29.Sawada, K., Takeda, M., Maruyama, K., Ishii, R., Yamada, M., Nagae, Y., & Komine, R. (1999). Effect of W on recovery of lath structure during creep of high chromium martensitic steels. Materials Science and Engineering: A, 267(1), 19-25. 30.Yamanouchi, N., Tamura, M., Hayakawa, H., Hishinuma, A., & Kondo, T. (1992). Accumulation of engineering data for practical use of reduced activation ferritic steel: 8% Cr-2%W-0.2%V-0.04%Ta-Fe. Journal of Nuclear Materials, 191, 822-826. 31.Wang, H. C., Somsen, C., Li, Y. J., Fries, S. G., Detemple, E., & Eggeler, G. (2019). Effect of Nb on improving the impact toughness of Mo-containing low-alloyed steels. Journal of Materials Science, 54(9), 7307-7321. 32.ASTM A213 – Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes. 33.Park, K., Kim, S., Chang, J., & Lee, C. (2012). Post-weld heat treatment cracking susceptibility of T23 weld metals for fossil fuel applications. Materials & Design, 34, 699-706. 34.Laha, K., Latha, S., Bhanu Sankara Rao, K., Mannan, S. L., & Sastry, D. H. (2001). Comparison of creep behaviour of 2.25 Cr–1Mo/9Cr–1Mo dissimilar weld joint with its base and weld metals. Materials Science and Technology, 17(10), 1265-1272. 35.David, S. A., Siefert, J. A., & Feng, Z. (2013). Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Science and Technology of Welding and Joining, 18(8), 631-651. 36.Bugge, J., Kjær, S., & Blum, R. (2006). High-efficiency coal-fired power plants development and perspectives. Energy, 31(10-11), 1437-1445. 37.Swindeman, R. W., Santella, M. L., Maziasz, P. J., Roberts, B. W., & Coleman, K. (2004). Issues in replacing Cr–Mo steels and stainless steels with 9Cr–1Mo–V steel. International Journal of Pressure Vessels and Piping, 81(6), 507-512. 38.Shankar, V., Valsan, M., Rao, K. B. S., Kannan, R., Mannan, S. L., & Pathak, S. D. (2006). Low cycle fatigue behavior and microstructural evolution of modified 9Cr–1Mo ferritic steel. Materials Science and Engineering: A, 437(2), 413-422. 39.Pandey, C., Mahapatra, M. M., Kumar, P., Saini, N., & Thakre, J. G. (2017). Nano-size particle evolution during heat treatment of P91 steel and their effect on micro hardness. Transactions of the Indian Institute of Metals, 1-8. 40.Wang, S. S., Chang, L., Wang, L., Wang, T., Wu, Y. D., Si, J. J. & Hui, X. D. (2015). Microstructural stability and short-term creep properties of 12Cr–W–Mo–Co steel. Materials Science and Engineering: A, 622, 204-211. 41.Paul, V. T., Saroja, S., & Vijayalakshmi, M. (2008). Microstructural stability of modified 9Cr–1Mo steel during long term exposures at elevated temperatures. Journal of Nuclear Materials, 378(3), 273-281. 42.Danielsen, H. K., & Hald, J. (2009). On the nucleation and dissolution process of Z-phase Cr (V, Nb) N in martensitic 12% Cr steels. Materials Science and Engineering: A, 505(1-2), 169-177. 43.Hättestrand, M., & Andren, H. O. (2001). Evaluation of particle size distributions of precipitates in a 9% chromium steel using energy filtered transmission electron microscopy. Micron, 32(8), 789-797. 44.Abbaschian, R., & Reed-Hill, R. E. (2008). Physical metallurgy principles. Cengage Learning. 45.Spigarelli, S., Cerri, E., Bianchi, P., & Evangelista, E. (1999). Interpretation of creep behaviour of a 9Cr–Mo–Nb–V–N (T91) steel using threshold stress concept. Materials Science and Technology, 15(12), 1433-1440. 46.Song, M., Sun, C., Fan, Z., Chen, Y., Zhu, R., Yu, K. Y., & Zhang, X. (2016). A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment. Acta Materialia, 112, 361-377. 47.Bhadeshia, H., & Honeycombe, R. (2017). Steels: Microstructure and Properties. Butterworth-Heinemann. 48.Han, B. Q., Mohamed, F. A., & Lavernia, E. J. (2003). Mechanical properties of iron processed by severe plastic deformation. Metallurgical and Materials Transactions A, 34(1), 71-83. 49.Speich, G. R., & Leslie, W. C. (1972). Tempering of steel. Metallurgical Transactions, 3(5), 1043-1054. 50.Gladman, T. (1999). Precipitation hardening in metals. Materials Science and Technology, 15(1), 30-36. 51.Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2017). Effect of normalization and tempering on microstructure and mechanical properties of V-groove and narrow-groove P91 pipe weldments. Materials Science and Engineering: A, 685, 39-49. 52.Manugula, V. L., Rajulapati, K. V., Reddy, G. M., & Rao, K. B. S. (2017). Role of evolving microstructure on the mechanical properties of electron beam welded ferritic-martensitic steel in the as-welded and post weld heat-treated states. Materials Science and Engineering: A, 698, 36-45. 53.Pandey, C., Mahapatra, M. M., Kumar, P., & Saini, N. (2018). Some studies on P91 steel and their weldments. Journal of Alloys and Compounds, 743, 332-364. 54.Pandey, C., & Mahapatra, M. M. (2016). Effect of heat treatment on microstructure and hot impact toughness of various zones of P91 welded pipes. Journal of Materials Engineering and Performance, 25(6), 2195-2210. 55.Arivazhagan, B., Srinivasan, G., Albert, S. K., & Bhaduri, A. K. (2011). A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process. Fusion Engineering and Design, 86(2-3), 192-197. 56.Schäfer, L. (1998). Influence of delta ferrite and dendritic carbides on the impact and tensile properties of a martensitic chromium steel. Journal of Nuclear Materials, 258, 1336-1339. 57.Li, X., Cabrillat, M. T., & Lejeail, Y. (2006). Study of modified 9Cr-1Mo welds (No. CNIC--01856/2006). 58.Santella, M. L., Swindeman, R. W., Reed, R. W., & Tanzosh, J. M. (2001, July). Martensite formation in 9Cr-1Mo steel weld metal and its effect on creep behavior. In EPRI Conference on 9Cr Materials Fabrication and Joining Technologies. 59.Albert, S. K., Matsui, M., Watanabe, T., Hongo, H., Kubo, K., & Tabuchi, M. (2003). Variation in the Type IV cracking behaviour of a high Cr steel weld with post weld heat treatment. International Journal of Pressure Vessels and Piping, 80(6), 405-413. 60.Wang, Y., Kannan, R., & Li, L. (2016). Characterization of as-welded microstructure of heat-affected zone in modified 9Cr–1Mo–V–Nb steel weldment. Materials Characterization, 118, 225-234. 61.Pandey, C., & Mahapatra, M. M. (2016). Effect of groove design and post-weld heat treatment on microstructure and mechanical properties of P91 steel weld. Journal of Materials Engineering and Performance, 25(7), 2761-2775. 62.Mayr, P., & Cerjak, H. (2010). The impact of welding on the creep properties of advanced 9–12% Cr steels. Transactions of the Indian Institute of Metals, 63(2-3), 131-136. 63.Wang, Y., Kannan, R., & Li, L. (2016). Identification and characterization of intercritical heat-affected zone in as-welded Grade 91 weldment. Metallurgical and Materials Transactions A, 47(12), 5680-5684. 64.Wang, Y., Kannan, R., Zhang, L., & Li, L. (2017). Microstructural Analysis of the As-Welded Heat-Affected Zone of a Grade 91 Steel Heavy Section Weldment. Welding. J, 96(6), 203-219. 65.Yoshino, M., Mishima, Y., Toda, Y., Kushima, H., Sawada, K., & Kimura, K. (2008). Influence of normalizing heat treatment on precipitation behaviour in modified 9Cr–1Mo steel. Materials at High Temperatures, 25(3), 149-158. 66.DuPont, J. N. (2012). Microstructural evolution and high temperature failure of ferritic to austenitic dissimilar welds. International Materials Reviews, 57(4), 208-234. 67.Christoffel, R. J., & Curran, R. M. (1956). Carbon migration in welded joints at elevated temperatures. Welding J. (NY), 35. 68.Sopoušek, J., & Foret, R. (2008). More sophisticated thermodynamic designs of welds between dissimilar steels. Science and Technology of Welding and Joining, 13(1), 17-24. 69.Kozeschnik, E., Pölt, P., Brett, S., & Buchmayr, B. (2002). Dissimilar 2· 25Cr/9Cr and 2Cr/0· 5CrMoV steel welds: Part 1: Characterisation of weld zone and numerical simulation. Science and Technology of Welding and Joining, 7(2), 63-68. 70.Wang, H. T., Wang, G. Z., Xuan, F. Z., Liu, C. J., & Tu, S. T. (2013). Local mechanical properties of a dissimilar metal welded joint in nuclear power systems. Materials Science and Engineering: A, 568, 108-117. 71.Smith, W. F. (1993). Structure and Properties of Engineering Alloys. McGraw-Hill. 72.Shankar, V., Gill, T. P. S., Mannan, S. L., & Sundaresan, S. (2003). Solidification cracking in austenitic stainless steel welds. Sadhana, 28(3-4), 359-382. 73.Kou, S. (2003). Welding metallurgy. New Jersey, USA, 223-226. 74.Elmer, J. W., Allen, S. M., & Eagar, T. W. (1989). Microstructural development during solidification of stainless steel alloys. Metallurgical Transactions A, 20(10), 2117-2131. 75.Takalo, T., Suutala, N., & Moisio, T. (1979). Austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 10(8), 1173-1181. 76.Suutala, N., Takalo, T., & Moisio, T. (1980). Ferritic-austenitic solidification mode in austenitic stainless steel welds. Metallurgical Transactions A, 11(5), 717-725. 77.Paupler, P. J. C. R., & Technology. (1988). GE Dieter. Mechanical Metallurgy. Mc Graw‐Hill Book Co., New York 1986. XXIII+ 751 p., DM 138.50, ISBN 0–07–016893–8. 23(2), 194. 78.Gale, W. F., & Totemeier, T. C. (2003). Smithells Metals Reference Book: Elsevier, 21-1. 79.Reed, S. J. (1998). Wavelength-dispersive x-ray spectrometry. In Modern Developments and Applications in Microbeam Analysis: Springer, 29-36. 80.Abe, F. (2008). Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants. Science and Technology of Advanced Materials, 9(1), 013002. 81.Sawada, K., Kubo, K., & Abe, F. (2003). Contribution of coarsening of MX carbonitrides to creep strength degradation in high chromium ferritic steel. Materials Science and Technology, 19(6), 732-738. 82.Ming, H., Zhang, Z., Wang, J., Han, E. H., & Ke, W. (2014). Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint. Materials Characterization, 97, 101-115. 83.Cao, J., Gong, Y., Zhu, K., Yang, Z. G., Luo, X. M., & Gu, F. M. (2011). Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Materials & Design, 32(5), 2763-2770. 84.Minami, Y., Kimura, H., & Ihara, Y. (1986). Microstructural changes in austenitic stainless steels during long-term aging. Materials Science and Technology, 2(8), 795-806. 85.Pavan, A. H. V., Vikrant, K. S. N., Ravibharath, R., & Singh, K. (2015). Development and evaluation of SUS 304H—IN 617 welds for advanced ultra supercritical boiler applications. Materials Science and Engineering: A, 642, 32-41. 86.Ji, Y. S., Park, J., Lee, S. Y., Kim, J. W., Lee, S. M., Nam, J. H. (2017). Long-term evolution of σ phase in 304H austenitic stainless steel: Experimental and computational investigation. Materials Characterization, 128, 23-29. 87.Handbook, M. (1990). Vol. 2. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 102.
|