跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳朝陽
研究生(外文):Jau-Yang Chen
論文名稱:合成indazole衍生物作為Nrf2調控劑
論文名稱(外文):Synthesis of Indazole Derivatives as Nrf2 Regulators
指導教授:張誌祥
指導教授(外文):Chih-Shiang Chang
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:藥物化學研究所碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:99
中文關鍵詞:?棣
外文關鍵詞:indazoleNrf2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Nrf2是一個氧化還原敏感性的轉錄因子,參與細胞內解毒機轉,屬於第二相酵素表現的蛋白。當Nrf2被活化時,會參與抗氧化、抗發炎、免疫等反應的發生,保護正常細胞免於受到過氧分子或內外源性的有毒物質的攻擊,是人體重要的抗氧化作用蛋白,當Nrf2被抑制時,細胞會受到活性氧的攻擊,最後導致腫瘤發生。本篇論文以indazole做為核心架構,合成一系列indazole衍生物,進行結構與Nrf2活性相關性的探討,我們主要在indazole的第1、第4及第6三個位置做官能基的改變,發現於indazole環上第4位以Cl取代時,對Nrf2活性有促進效果,有助於預防腫瘤的生成;當第4位上以一級胺或二級胺做取代時,反而具有抑制Nrf2的作用,其中以雜環pyridine為取代時抑制效果最明顯,可應用於化學輔助療法。由於腫瘤發生過程大多在細胞複製時產生突變,透過誘導Nrf2表現量增加來保護細胞,並將致癌物質予以排除,可達到預防癌症的效果,然而,在腫瘤細胞方面,則是需要抑制Nrf2的活性,避免抗藥性的產生防止腫瘤轉移。因此發展indazole衍生物對於預防癌症或防止癌細胞產生抗藥性是可行的方法之一。

Nuclear factor (erythoid-derived 2)-like 2 (Nrf2) is a critical transcription factor regulating a cellular protective response that defends cells against toxic insults from a broad spectrum of chemicals. The activation of Nrf2 possesses chemopreventive activity against chemical carcinogenesis. A series of indazole derivatives was synthesized and bioevaluated for the Nrf2 activity on the nasopharyngeal carcinoma TW01-9ARE、TW01-15ARE、HSC3-9ARE. The results were shown that the introduction of Cl moiety into 4-position of indazole ring possessed the activation of Nrf2 enhancer. However, the substitution of primary amine or secondary amine moiety on 4-position of indazole ring attenuated the Nrf2 activity. Heterocyclic substituted pyridine as the most obvious inhibitory effect can be applied to chemical adjuvant therapy.

目錄
縮寫表 XII
生化名詞 XII
化學名詞 XIII
摘要 XIV
Abstract XV
第一章 緒論 1
1.1 Nrf2的角色 2
1.1.1 Nrf2 pathway 3
1.1.2 Nrf2在腫瘤細胞與正常細胞的影響 4
1.2 Nrf2為標的化合物 7
1.2.1 Nrf2的活化劑 8
1.2.2 Nrf2的抑制劑 10
1.3 Indazole的應用發展 10
1.3.1 Indazole的生物活性 10
1.3.2 Indazole合成策略 13
1.3.2.1 由2-acetylcyclohexane-1,3-dione與hydrazine合成indazole 13
1.3.2.2 由1H-pyrazole-4-carbaldehyde與diethyl succinate合成ethyl 7-acetoxy-1-acetyl-1H-indazole-5-carboxylate 14
1.3.2.3 由benzaldehyde與3-hydrazinylbenzonitrile合成3-(7-fluoro-1H-indazol-1-yl)benzonitrile 14
1.3.2.4 由2-Methyl-3-nitroaniline合成4-nitro-1H-indazole 15
1.3.2.5 由1H-benzo[d][1,3]oxazine-2,4-dione與phenylhydrazine合成3-methoxy-1-phenyl-1H-indazole 15
第二章 研究動機與目的 17
2.1 動機與目的 17
2.2 Indazole衍生物逆合成分析 18
第三章 結果與討論 19
3.1 合成路徑 19
3.2 目標產物Indazole衍生物合成方法 22
3.3 藥理活性 31
第四章 結論 37
4.1 化學合成 37
4.2 藥理活性 38
4.2.1 Indazole衍生物在1位(R1)的影響 38
4.2.2 Indazole衍生物phenyl接在N-1和N-2的影響 40
4.2.3 Indazole衍生物在6位(R2)上的影響 41
4.2.4 Indazole衍生物在4位(R3)上的影響 42
第五章 實驗部分 44
5.1 檢測方法與實驗器材 44
5.2 實驗試劑 44
5.3 標的化合物Indazole衍生物的合成 45
4-Chloro-6-(4-methoxyphenyl)-1-phenyl-1H-indazole (5a, BR-031) 45
4-Chloro-1-(4-chlorophenyl)-6-(4-methoxyphenyl)-1H-indazole (5b, BR-021) 46
4-Chloro-1-(3-chlorophenyl)-6-(4-methoxyphenyl)-1H-indazole (5c, BR-049-1) 47
4-Chloro-1-(2-chlorophenyl)-6-(4-methoxyphenyl)-1H-indazole (5d, BR-042) 48
4-Chloro-1,6-bis(4-methoxyphenyl)-1H-indazole (5e, BR-030) 49
4-Chloro-1-(3-methoxyphenyl)-6-(4-methoxyphenyl)-1H- indazole (5f, BR-043) 51
4-Chloro-1-(2-methoxyphenyl)-6-(4-methoxyphenyl)-1H- indazole (5g, BR-047) 52
4-Chloro-6-(4-methoxyphenyl)-1-(p-tolyl)-1H-indazole (5h, BR-029) 53
4-Chloro-6-(4-methoxyphenyl)-1-(m-tolyl)-1H-indazole (5i, BR-028) 54
4-Chloro-6-(4-methoxyphenyl)-1-(o-tolyl)-1H-indazole (5j, BR-046-1) 55
4-Chloro-6-(4-methoxyphenyl)-1-(4-nitrophenyl)-1H-indazole (5k, BR-041) 56
4-Chloro-6-(4-methoxyphenyl)-1-(3-nitrophenyl)-1H-indazole (5l, BR-051) 58
4-Chloro-6-(4-methoxyphenyl)-1-(2-nitrophenyl)-1H-indazole (5m, BR-050) 59
4-Chloro-1-(3,5-dimethylphenyl)-6-(4-methoxyphenyl)-1H- indazole (5n, BR-052) 60
4-Chloro-1-(3,4-dimethylphenyl)-6-(4-methoxyphenyl)-1H- indazole (5o, BR-058) 61
4-Chloro-1-(3,5-dichlorophenyl)-6-(4-methoxyphenyl)-1H- indazole (5p, BR-057) 62
4-Chloro-1-(4-chlorophenyl)-1H-indazole (8, BR-016-1) 63
4-Chloro-6-(4-methoxyphenyl)-2-phenyl-2H-indazole (9, BR-059-2) 64
N-(2-Methoxyethyl)-6-(4-methoxyphenyl)-1-phenyl-1H-indazol-4-amine (6a, BR-067) 66
N-Cyclopentyl-6-(4-methoxyphenyl)-1-phenyl-1H-indazol-4- amine (6b, BR-073) 66
6-(4-Methoxyphenyl)-N-methyl-1-phenyl-1H-indazol-4-amine (6c, BR-074) 68
N-Cyclopropyl-6-(4-methoxyphenyl)-1-phenyl-1H-indazol-4- amine (6d, BR-078) 69
N,6-Bis(4-methoxyphenyl)-1-phenyl-1H-indazol-4-amine (6e, BR-083) 70
4-Hydrazinyl-6-(4-methoxyphenyl)-1-phenyl-1H-indazole (6f, BR-084) 71
6-(4-Methoxyphenyl)-1-phenyl-4-(pyrrolidin-1-yl)-1H-indazole (6g, BR-087) 72
6-(4-Methoxyphenyl)-1-phenyl-4-(morpholin-4-yl)-1H-indazole (6h, BR-088) 73
N-4-(Phenol)-6-(4-methoxyphenyl)-1-phenyl-1H-indazol-4- amine (6i, BR-089) 73
6-(4-Methoxyphenyl)-N,1-diphenyl-1H-indazol-4-amine (6j, BR-091) 75
N-(4-Fluorophenyl)-6-(4-methoxyphenyl)-1-phenyl-1H-indazol-4-amine (6k, BR-092) 76
6-(4-Methoxyphenyl)-1-phenyl-N-(pyridin-3-yl)-1H-indazol-4- amine (6l, BR-094) 76
6-(4-Methoxyphenyl)-1-phenyl-N-(pyridin-2-yl)-1H-indazol-4- amine (6m, BR-095) 78
6-(4-Methoxyphenyl)-1-phenyl-N-(4-(trifluoromethyl)phenyl)-1H-indazol-4-amine (6n, BR-096) 79
N-Cyclohexyl-6-(4-methoxyphenyl)-1-phenyl-1H-indazol-4- amine (6o, BR-097) 79
6-(4-Methoxyphenyl)-4-(4-methylpiperazin-1-yl)-1-phenyl-1H- indazole (6p, BR-098) 81
N-Allyl-6-(4-methoxyphenyl)-1-phenyl-1H-indazol-4-amine (6q, BR-099) 82
6-(4-Methoxyphenyl)-1-phenyl-4-(piperidin-1-yl)-1H-indazole (6r, BR-101) 83
6-(4-Methoxyphenyl)-1-phenyl-N-(pyridin-4-yl)-1H-indazol-4- amine (6s, BR-102) 83
N-([1,1''-Biphenyl]-3-yl)-6-(4-methoxyphenyl)-1-phenyl-1H- indazol-4-amine (6t, BR-116) 85
N-([1,1''-Biphenyl]-2-yl)-6-(4-methoxyphenyl)-1-phenyl-1H- indazol-4-amine (6u, BR-117) 86
4-Chloro-6-(4-methoxyphenyl)-1-(3-nitrophenyl)-6,7-dihydro-1H-indazole (4l, BS-082) 87
4-Chloro-6-(4-chlorophenyl)-1-phenyl-1H-indazole (14a, BS-076) 87
4-Chloro-1,6-diphenyl-1H-indazole (14b, BS-078) 89
4-Chloro-6-(3,4-dimethoxyphenyl)-1-phenyl-1H-indazole (14c, BS-084-2) 90
4-Chloro-6-(4-fluorophenyl)-1-phenyl-1H-indazole (14d, BS-087) 91
6-(Benzo[d][1,3]dioxol-5-yl)-4-chloro-1-phenyl-1H-indazole (14e, BS-088) 92


Figure目錄
Figure 1. Schematic model of Nrf2 regulation by Keap1. 4
Figure 2. A model for the importance of the context of tumour stage for the biological consequences of Nrf2 activation. 5
Figure 3. In the Krebs cycle, intracellular fumarate is rapidly metabolized to malate by the enzyme fumarate hydratase (FH). 6
Figure 4. Schematic summary of possible effects of HO-1 activation on tumor growth. 7
Figure 5. Suppression of NRF2 activity by KEAP1, and disruption by drugs. 8
Figure 6. 具有增強Nrf2活性的天然物質 9
Figure 7. 具有增強Nrf2活性的化合物 9
Figure 8. 具有抑制Nrf2活性的化合物 10
Figure 9. 具有各種生物活性的indazole衍生物 12
Figure 10. Indazole衍生物在臨床上用藥 13
Figure 11. Indazole逆合成分析設計圖 18
Figure 12. 化合物4l的NMR氫譜 27
Figure 13. 化合物5l的NMR氫譜 28
Figure 14. Buchwald–Hartwig amination 30
Figure 15 Indazole衍生物(R1)對TW01-9ARE活性影響 39
Figure 16 Indazole衍生物對HSC3-9ARE活性影響 40
Figure 17 Indazole衍生物N-1,N-2的活性影響 41
Figure 18 Indazole衍生物(R2)對TW01-9ARE活性影響 42
Figure 19 Indazole衍生物(R3)對TW01-9ARE活性影響 43


Scheme目錄
Scheme 1. 由2-acetylcyclohexane-1,3-dione與hydrazine合成indazole 13
Scheme 2. 由1H-pyrazole-4-carbaldehyde與diethyl succinate合成ethyl 7-acetoxy-1-acetyl-1H-indazole-5-carboxylate 14
Scheme 3. 由benzaldehyde與3-hydrazinylbenzonitrile合成3-(7-fluoro-1H-indazol-1-yl)benzonitrile 15
Scheme 4. 由2-Methyl-3-nitroaniline合成4-nitro-1H-indazole 15
Scheme 5. 由1H-benzo[d][1,3]oxazine-2,4-dione與phenylhydrazine合成3-methoxy-1-phenyl-1H-indazole 16
Scheme 6. 化合物5a-p的合成 20
Scheme 7. 化合物14a-p的合成 21
Scheme 8. 化合物6a-u的合成 22
Scheme9. 2-(N,N-Dimethylaminomethylene)-5-(4-methoxyphenyl)-cyclohexane-1,3-dione的合成 23
Scheme 10. Tetrahydroindazolone衍生物的合成 24
Scheme 11. 化合物indazole衍生物8的合成 25
Scheme 12. 中間產物化合物4l的合成 25
Scheme 13. 化合物4l與DDQ反應生成化合物5l 27
Scheme 14. 化合物 indazole衍生物5的合成 29
Scheme 15. 化合物indazole衍生物6的合成 31
Scheme 16. Indazole衍生物的合成 37
Scheme 17. Indazole衍生物的合成 38





Wattenberg, L. W.; Chemoprevention of cancer. Cancer Res. 1985, 45, 1-8.
Zhang, M.; An, C.; Gao, Y.; Leak, R. K.; Chen, J.; Zhang, M. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 2013, 100, 30-47.
Cho, H. Y.; Reddy, S. P.; Kleeberger, S. R. Nrf2 defends the lung from oxidative stress. Antioxid. Redox Signal. 2006, 8, 76-87.
Ruiz, S.; Pergola, P. E.; Zager, R. A.; Vaziri, N. D.; Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int. 2013, 83, 1029-1041.
Lau, A.; Villeneuve, N. F.; Sun, Z.; Wong, P. K.; Zhang, D. D. Dual roles of Nrf2 in cancer. Pharmacol. Res. 2008, 58, 262-270.
Sporn, M. B.; Liby, K. T. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 2012, 12, 564-571.
Jozkowicz, A.; Was, H.; Dulak, J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid. Redox Signal. 2007, 9, 2099-2117.
Satoh, H.; Moriguchi, T.; Taguchi, K.; Takai, J.; Maher, J. M.; Suzuki, T.; Winnard, P. T.; Raman, V.; Ebina, M.; Nukiwa, T.; Yamamoto, M. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 2010, 31, 1833-1843.
Lee, J. S.; Surh, Y. J. Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 2005, 224, 171-184
Emmert, S. W.; Desai, D.; Amin, S.; Richie, J. P., Jr. Enhanced Nrf2-dependent induction of glutathione in mouse embryonic fibroblasts by isoselenocyanate analog of sulforaphane. Bioorg. Med. Chem. Lett. 2010, 20, 2675-2679.
Tanaka, A.; Hamada, N.; Fujita, Y.; Itoh, T.; Nozawa, Y.; Iinuma, M.; Ito, M. A novel kavalactone derivative protects against H2O2-induced PC12 cell death via Nrf2/ARE activation. Bioorg. Med. Chem. 2010, 18, 3133-3139.
Lee, H. H.; Park, S. A.; Almazari, I.; Kim, E. H.; Na, H. K.; Surh, Y. J. Piceatannol induces heme oxygenase-1 expression in human mammary epithelial cells through activation of ARE-driven Nrf2 signaling. Arch. Biochem. Biophys. 2010, 501, 142-150.
Liu, X. M.; Peyton, K. J.; Shebib, A. R.; Wang, H.; Durante, W. Compound C stimulates heme oxygenase-1 gene expression via the Nrf2-ARE pathway to preserve human endothelial cell survival. Biochem. Pharmacol. 2011, 82, 371-379.
Yao, J. W.; Liu, J.; Kong, X. Z.; Zhang, S. G.; Wang, X. H.; Yu, M.; Zhan, Y. Q.; Li, W.; Xu, W. X.; Tang, L. J.; Ge, C. H.; Wang, L.; Li, C. Y.; Yang, X. M. Induction of activation of the antioxidant response element and stabilization of Nrf2 by 3-(3-pyridylmethylidene)-2-indolinone (PMID) confers protection against oxidative stress-induced cell death. Toxicol. Appl. Pharmacol. 2012, 259, 227-235.
Tusi, S. K.; Ansari, N.; Amini, M.; Amirabad, A. D.; Shafiee, A.; Khodagholi, F. Attenuation of NF-kappaB and activation of Nrf2 signaling by 1,2,4-triazine derivatives, protects neuron-like PC12 cells against apoptosis. Apoptosis 2010, 15, 738-751.
Arlt, A.; Sebens, S.; Krebs, S.; Geismann, C.; Grossmann, M.; Kruse, M. L.; Schreiber, S.; Schafer, H. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 2012.
Tang, X.; Wang, H.; Fan, L.; Wu, X.; Xin, A.; Ren, H.; Wang, X. J. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 2011, 50, 1599-1609.
Song, J. Y.; Yun, Y. S.; Ahn, J. Y.; Jung, I. S.;Lee, S. L.; Park, S.; Lim, M. J.;Kim, M. H. Nrf2 inhibitors and use thereof. WO Patent 2011046382, 2011.
Marfat, A. Preparation of substituted indazoles as phosphodiesterase (PDE) type IV and tumor necrosis factor (TNF) inhibitors. WO Patent 9749702, 1997.
(a) Meng, F.; Cai, X.; Duan, J.; Matteucci, M. G.; Hart, C. P. A novel class of tubulin inhibitors that exhibit potent antiproliferation and in vitro vessel-disrupting activity. Cancer Chemother. Pharmacol. 2007, 61, 953-963. (b) Maggio, B.; Raimondi, M. V.; Raffa, D.; Plescia, F.; Cascioferro, S.; Plescia, S.; Tolomeo, M.; Di Cristina, A.; Pipitone, R. M.; Grimaudo, S. Synthesis of substituted 3-amino-N-phenyl-1H-indazole-1-carboxamides endowed with antiproliferative activity. Eur. J. Med. Chem. 2011, 46, 168-174.
Chene, P.; Floersheimer, A.; Furet, P.; Schoepfer, J. Indazoles as inhibitors of HSP90 and their preparation, pharmaceutical compositions, and use for treatment of proliferative diseases. WO Patent 2006010595, 2006.
Bertin, L.; Carry, J. C.; Mailliet, P.; Minoux, H.; Pilorge, F.; Ruxer, J. M. New 4-heterocyclyl indazole derivatives, compositions containing them and their use as HSP90 inhibitors for treating cancer. WO Patent 2010106290, 2010.
Dai, Y.; Davidsen, S. K.; Ericsson, A. M.; Hartandi, K; Ji, Z.; Michaelides, M.R. Preparation of (indazolylphenyl), (benzisoxazolylphenyl), (benzisothiazolylphenyl) ureas and related compounds as protein tyrosine kinase inhibitors for treatment of cancer. WO Patent 2004113304, 2004.
Murray, I. A.; Krishnegowda, G.; DiNatale, B. C.; Flaveny, C.; Chiaro, C.; Lin, J.-M.; Sharma, A. K.; Amin, S.; Perdew, G. H. Development of a Selective Modulator of Aryl Hydrocarbon (Ah) Receptor Activity that Exhibits Anti-Inflammatory Properties. Chem. Res. Toxicol. 2010, 23, 955-966.
Chen, C. J.; Hsu, M. H.; Huang, L. J.; Yamori, T.; Chung, J. G.; Lee, F. Y.; Teng, C. M.; Kuo, S. C. Anticancer mechanisms of YC-1 in human lung cancer cell line, NCI-H226. Biochem. Pharmacol. 2008, 75, 360-368.
Kelly, R. J.; Rixe, O. Axitinib (AG-013736). Recent Results Cancer Res. 2010, 184, 33-44.
Kesters, D.; Thompson, A. J.; Brams, M.; van Elk, R.; Spurny, R.; Geitmann, M.; Villalgordo, J. M.; Guskov, A.; Helena Danielson, U.; Lummis, S. C.; Smit, A. B.; Ulens, C. Structural basis of ligand recognition in 5-HT(3) receptors. EMBO Rep. 2013, 14, 49-56.
Ricci, J.-E. Glycolytic inhibitor with cytotoxic agent for use in the treatment of a cancer. PCT Int. WO Patent 2012123774 A1, 2012.
Croce, P. D.; La Rosa, C. A Convenient Synthesis of Indazoles. Synthesis 1984, 1984, 982-983.
Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Romagnoli, R.; Braccioli, G.; Zaid, A. N.; Infantas, M. J. P. d. l. A New Synthethic Approach to indazole Synthesis. Synthesis 1997, 10, 1140-1142.
Lee, Y.-K.; Parks, D. J.; Lu, T.; Thieu, T. V.; Markotan, T.; Pan, W.; McComsey, D. F.; Milkiewicz, K. L.; Crysler, C. S.; Ninan, N.; Abad, M. C.; Giardino, E. C.; Maryanoff, B. E.; Damiano, B. P.; Player, M. R. 7-Fluoroindazoles as Potent and Selective Inhibitors of Factor Xa†. J. Med. Chem. 2007, 51, 282-297.
Barcel??, M.; Ravi?狒, E.; Masaguer, C. F.; Dom?瀋guez, E.; Areias, F. M.; Brea, J.; Loza, M. I. Synthesis and binding affinity of new pyrazole and isoxazole derivatives as potential atypical antipsychotics. Bioorg. Med. Chem. Lett. 2007, 17, 4873-4877.
Zhang, X.; Song, F.; Kuo, G. H.; Xiang, A.; Gibbs, A. C.; Abad, M. C.; Sun, W.; Kuo, L. C.; Sui, Z. Optimization of a pyrazole hit from FBDD into a novel series of indazoles as ketohexokinase inhibitors. Bioorg. Med. Chem. Lett. 2011, 21, 4762-4767.
Brian, J. K.; Dilinie, P. F.; Anthony, R. H.; Kirill, A. L. A general method for the synthesis of unsymmetrically substituted ureas via palladium-catalyzed amidation. Org. Lett. 2009, 11, 947-950.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top