跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴昀志
研究生(外文):Yun-Jr Lai
論文名稱:利用雙發光層製作高效率白色螢磷混合式有機發光二極體
論文名稱(外文):Improved Current Efficiency of White Hybrid Fluorescent and Phosphorescent OLED with Double-Emission Layers
指導教授:蔡裕勝
指導教授(外文):Yu-Sheng Tsai
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:黃色磷光有機發光二極體螢磷混合式有機發光二極體載子平衡能量轉移高效率
外文關鍵詞:yellow phosphorescent organic light-emitting diodefluorescent and phosphorescent hybrid white organic light-emitting diodeenergy-transfercharge carrier balancehigh efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先研製高效率黃色磷光有機發光二極體,利用雙極性之磷光主發光體材料EPH-31搭配黃色磷光客發光體材料EPY-01製作黃色磷光OLED元件,探討發光層厚度對於元件效率之影響,結果發現發光層厚度為60 nm時能使載子較為平衡,於20 mA/cm2下發光效率可達38.1 cd/A。接著搭配藍色螢光發光層欲製作螢磷混合式白色有機發光二極體元件,結果發現藍色與黃色發光層搭配無法製作出CIE值位於白光範圍內的有機發光二極體元件,改以橘紅色與藍色搭配製作白色有機發光二極體元件,利用高耐熱之雙極性螢光主發光體材料UBH-15搭配藍色螢光摻雜物EB-502作為藍光發光層,雙極性之磷光主發光體材料EPH-31搭配橘紅色磷光摻雜物(Os(bpftz)2(PPh2Me)2)作為橘紅光發光層,並比較另一雙極性之磷光主發光體材料26DczPPy,分別製作螢磷混合式白光有機發光二極體元件,對其光電特性進行探討,使用26DczPPy為主發光體時,因為雙發光層間的能階差異較大,載子能侷限在雙發光層介面處,使元件擁有良好的色穩定性,操作電壓從8 V到12 V,CIE色座標僅從(0.37,0.37)到(0.35,0.36),但26DczPPy與摻雜物(Os(bpftz)2(PPh2Me)2)的HOMO能障過大(1.25 eV),無法有效進行能量轉移,元件發光效率僅能達到12 cd/A。而使用EPH-31為主發光體結構時,發現電子傳輸層3TPYMB與發光層EPH-31的LUMO能階差異大(0.95 eV),將導致電子不易注入發光層,因此將電子傳輸層共摻雜15 nm至發光層中,使電子能輕易進入發光層,於20 mA/cm2下,元件發光效率由15.1 cd/A提昇至17.2 cd/A,最後藉由加入少量濃度的黃色磷光摻雜,利用能量轉移機制,提高發光效率,20 mA/cm2下,CIE值為(0.41,0.43),元件發光效率達到18 cd/A。

In this study, yellow phosphorescent organic light-emitting diode based on using phosphorescent bipolar host material (EPH-31) and phosphor dopant (EPY-01) was successfully fabricated at first. Through utilizing the thickness of emitting layer (EML), the charge carrier balance was achieved when thickness of EML was 60 nm. The current efficiency of 38.1 cd/A at 20 mA/cm2 can be obtained. After that, phosphorescent hybrid white organic light-emitting diode (HWOLED) was tried to fabricate by adding a fluorescent blue EML to previous yellow EML. But the HWOLED was unable located in the white light range of CIE coordinate. So it is necessary to change an orange dopant that aid to fabricate the HWOLED. Thermal stability bipolor fluorescent material (UBH-15) with fluorescent dopant (EB-502) as blue fluorescent EML(B-EML) along with (EPH-31) with orange dopant (Os(bpftz)2(PPh2Me)2 as orange phosphorescent EML(O-EML) was used. And then device based on this structure was compared with another bipolar phosphorescent host (26DczPPy). When using 26DczPPy as host material, the HWOLED obtained color stability due to barrier from each B-EML and O-EML energy band. So that carrier can be confine in the interface of two EMLs. Consequently, driving voltage increased from 8 V to 12 V, CIE coordinates only shifted from (0.37,0.37) to (0.35,0.36). There is a big barrier(1.25 eV) due to the difference of HOMO level between 26DczPPy and Os result in the difficultcy of energy-transfer. Performance only reached current efficiency of 12 cd/A. When using EPH-31 as host, the difference of LUMO energy level between EPH-31 and ETL(3TPYMB) was very large (0.95 eV), led electron moving hardly into EML. To solve this problem, co-doping 3TPYMB into EPH-31 structure was used, electron can move easily into EML. Current efficiency of device increased from15.1 cd/A to 17.2 cd/A. Finally, the HWOLED fabrication by utilizing energy-transfer mechanism, using low yellow doping concentration was shown the best current efficiency of 18 cd/A and CIE coordinate is (0.41,0.43).

摘要............................i
Abstract......................iii
誌謝............................v
表目錄........................viii
圖目錄..........................ix
第一章 緒論.......................1
1.1 有機發光二極體之發展歷程.........1
1.2 有機發光二極體之優點與展望.......1
1.3 研究動機......................3
第二章 文獻探討....................5
2.1 黃色磷光OLED元件...............5
2.2 白色螢磷OLED元件...............5
第三章 實驗方法與步驟...............8
3.1 實驗流程......................8
3.2 基板的清潔....................9
3.3 陽極的製備與前處理.............10
3.3.1 陽極製備過程................10
3.3.2 陽極前處理..................11
3.4 蒸鍍有機薄膜層.................12
3.4.1 有機材料之選用...............12
3.4.2 有機薄膜層蒸鍍系統與方式介紹....16
3.5 蒸鍍金屬薄膜層作為陰極...........17
3.6 元件量測......................19
3.7發光效率之計算..................20
第四章 結果與討論...................21
4.1 高效率黃色磷光有機發光二極體......21
4.1.1 不同發光層厚度對黃色磷光有機發光二極體光電特性之影響....21
4.2 白色螢磷混合式有機發光二極體.....26
4.2.1 不同磷光摻雜材料對白色螢磷混合式有機發光二極體光電特性之影響....26
4.2.2 不同藍色螢光發光層厚度對白色螢磷混合式有機發光二極體光電特性之影響....29
4.2.3 使用26DczPPy作為磷光主發光體材料製作白色螢磷混合式有機發光二極體元件....34
4.2.4 改變電子傳輸層材料對白色螢磷混合式有機發光二極體光電特性之影響....41
4.2.5 共摻雜電子傳輸層於磷光發光層對白色螢磷混合式有機發光二極體光電特性之影響....47
4.2.6 改變電子注入層材料對白色螢磷混合式有機發光二極體光電特性之影響....54
4.2.7 利用能量轉移機制提昇白色螢磷混合式有機發光二極體元件效率....60
第五章 結論....67
參考文獻....69
Extended Abstract....72
簡歷....75


[1]M. Pope, H. Kallmann, P. Magnante, “Electroluminescence in Organic Crystals”, J. Chem. Phys., vol. 38, pp. 2042-2043, 1963.
[2]Tang. C.W, Vanslyke, S. A,“Organic electroluminescent diodes”, Appl. Phys. Lett., vol. 51, pp. 913-915, 1987.
[3]材網編輯室,”OLED材料的技術動向及今後展望”,民國100年七月。
[4]陳金鑫,黃孝文,“夢幻顯示器OLED材料與元件”,五南圖書出版公司,民國96年12月。
[5]S. A. VanSlyke, C. W. Tang, L.C. Roberts, “Electroluminescent device with organic luminescent medium”, US 4,720,432, 1988.
[6]K.S. Yook, S.O. Jeon, C.W. Joo, J.Y. Lee, “High efficiency, color stability, and stable efficiency roll off in three color hybrid white organic light emitting diodes”, Appl. Phys. Lett. vol. 93, pp. 073302-073302-3, 2008.
[7]Y. Wang, Y. Hua, X. Wu, L. Zhang, Q. Hou, N. Zhang, L. Ma, X. Cheng, S. Yin, “Application of mixed interface in white-electrophosphorescent devices: An efficient approach to adjust the distributions of carriers” Appl. Phys. Lett., vol. 93, pp. 113302-113302-3, 2008.
[8]G. Schwartz, T.H. Ke, C.C. Wu, K. Walzer, K. Leo, “Balanced ambipolar charge carrier mobility in mixed layers for application in hybrid white organic light-emitting diodes”, Appl. Phys. Lett., vol. 93, pp. 073304-073304-3, 2008.
[9]J.H. Seo, I.H. Park, G.Y. Kim, K.H. Lee, M.K. Kim, S.S. Yoon, Y.K. Kim, “Hybrid spacer for high-efficiency white organic light-emitting diodes”, Appl. Phys. Lett., vol. 92, pp. 183303-183303-3, 2008.
[10]H. L. Huang, T. C. Chao, M. R. Tseng, “Novel and High Efficient Yellow Phosphorescent Iridium Emitters”, The 17th International Display Workshops, pp. 1173-1175, 2010.
[11]B. P. Yan, C. C. Cheung, Steven C. F. Kui, V. A. L. Roy, and Chi-Ming Che, “High-efficiency orange and yellow organic light-emitting devices using platinum(II) complexes containing extended -conjugated cyclometalated ligands as dopant materials”, Appl. Phys. Lett., vol.91, pp. 063508-063508-3, 2007.
[12]J. H. Yao, C. Zhen, K. P. Loh, Z. K. Chen, “Novel iridium complexes as high-efficiency yellow and red phosphorescent light emitters for organic light-emitting diodes”, Tetrahedron vol. 64, pp. 10814-10820, 2008.
[13]C. L. Ho, M. F. Lin, W. Y. Wong, W. K. Wong, and C. H. Chen, “High-efficiency and color-stable white organic light-emitting devices based on sky blue electrofluorescence and orange electrophosphorescence”, Appl. Phys. Lett., vol. 92, pp. 083301-083301-3, 2008.
[14]U. S. Bhansali, H. Jia, M. A. Quevedo Lopez, B. E. Gnade, W. H. Chen, and M. A. Omary, “Controlling the carrier recombination zone for improved color stability in a two-dopant fluorophore/phosphor white organic light-emitting diode”, Appl. Phys. Lett., vol. 94, pp. 203501-203501-3, 2009.
[15]K. S. Yook,S. O. Jeon, C. W. Joo, J.Y. Lee, “Low driving voltage in white organic light-emitting diodes using an interfacial energy barrier free multilayer emitting structure”, J. Lumin., vol. 129, pp. 937-940, 2009.
[16]J. H. Seo, J. S. Park, S. J. Lee, B. M. Seo, K. H. Lee, J. K. Park, S. S. Yoon, Y. K. Kim, “Codoped spacer ratio effect of hybrid white organic light-emitting diodes”, Current Applied Physics, vol. 11, pp. 564-567, 2011.
[17]J. H. Seo, J. H. Seo, J. H. Park, and Y. K. Kim, “Highly efficient white organic light-emitting diodes using two emitting materials for three primary colors”, Appl. Phys. Lett., vol. 90, pp. 203507-203507-3, 2007.
[18]Q. Wang, C. L. Ho, Y. Zhao, D. Ma, W. Y. Wong, L. Wang, “Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs: The influence of triplet transfer and charge-transport behavior on enhancing device performance”, Org. Electron., vol. 11, pp. 238-246, 2010.
[19]J. H. Seo, I. H. Park, G. Y. Kim, K. H. Lee, M. K. Kim, S. S. Yoon, and Y. K. Kim, “Hybrid spacer for high-efficiency white organic light-emitting diodes”, Appl. Phys. Lett., vol. 92, pp. 183303-183303-3, 2008.
[20]R. H. Young, J. J. Fitzgerald,“Dipole Moments of Hole-Transporting Materials and Their Influence on Hole Mobility in Molecularly Doped Polymers”, J. Phys. Chem. vol. 99, pp. 4230-4240, 1995.
[21]J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L. Ritchie, H. K. Hall, T. Hopkins, E. A. Mash, J. Wang, A. Padias, S. Thayumanavan, S. Barlow, S. R. Marder, G. E. Jabbour, S. Shaheen, B. Kippelen, N. Peyghambarian, R. M. Wightman, N. R. Armstrong, “Electrochemistry and electrogenerated chemiluminescence processes of the components of aluminum quinolate/triarylamine, and related organic light-emitting diodes.”, J. Am. Chem. Soc., vol. 120, pp. 9646-9655, 1998.
[22]D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, and J. Kido, “Novel Electron-transport Material Containing Boron Atom with a High Triplet Excited Energy Level”, Chem. Lett. 36, 262, 2007.
[23]S. R. Forrest, D. D. C. Bradley, M. E. Thompson, “Measuring the Efficiency of Organic Light-Emitting Devices”, Adv. Mater., vol. 15, pp. 1043-1048, 2003.
[24]C. H Chang, Y. H. Lin, C. C. Chen, C. K. Chang, C. C. Wua, L, S. Chen, W. W. Wu, Yun Chi, “Efficient phosphorescent white organic light-emitting devices incorporating blue iridium complex and multifunctional orange–red osmium complex”, Org. Electron., vol. 10, pp. 1235-1240, 2009.
[25]Y. Kim, D. Choi and H. Kim, “Melting Effect of Hole-Injecting Layer on the Performance of Passive Matrix Organic Light-Emitting Displays”, J. Phys. Chem., vol. 2, pp. 13-16, 2008.
[26]M. A. Baldo, S. R. Forrest, “Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer”, Phys. Rev. B, vol. 62, pp. 10958-10966, 2000.
[27]謝明達,陳振芳,Alq3與BAlq之電流傳輸分析與不同濃度WO3摻雜入NPB之電性影響,國立交通大學電子物理系碩士論文,第20-23頁,民國94年6月。
[28]T. M. Brown, and R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, and J. H. Burroughes, F. Cacialli, “Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes”, J. Appl. Phys. vol. 93, pp. 6159-6172, 2003.
[29]P. Chen, W. Xie, J. Li, T. Guan, Y. Duan, Y. Zhao, S. Liu, and C. Ma, “White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers”, Appl. Phys. Lett., vol. 91, pp. 023505-023505-3, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top