跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/09/10 13:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何官儒
研究生(外文):Guan-Ru Ho
論文名稱:多輸出參考電壓設計
論文名稱(外文):Design of Multi-Output Reference Voltage
指導教授:劉偉行劉偉行引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:48
中文關鍵詞:溫度係數電流鏡溫度係數參考電壓
外文關鍵詞:temperature coefficientcurrent mirrorreference voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係有關多輸出參考電壓電路設計。本電路是利用BJT所具有的的正/負溫度係數特性參數互相補償,以實現一個具有零溫度係數的參考電壓電路。相較於已知電路,本論文提出的電路具有低溫度係數、架構簡單,以及較少晶片面積之優點。
本論文除了詳細敘述工作原理外,並使用HSPICE及LAKER電路模擬軟體以0.35微米製程進行佈局並下現實作;電路供應電壓是5V,溫度變化範圍則為-20°C-120°C。根據佈局後模擬結果,一階溫度補償後在25°C時,參考電壓輸出為2.965V與1.483V,電壓變化量為0.78mV與0.38mV,消耗功率為1.3952mW。而二階溫度補償後在25°C時參考電壓輸出為 3.056V與1.53V,溫度變化量為2.54mV與1.24mV,消耗功率為2.6554mW。

電路模擬結果與理論推導相符合,可證明電路的可行性。本論文提出之低溫度係數參考電壓電路可適用於汽車電子裝置,以及應用於各種數位和類比電路之中。


This thesis is related to the design of multi-output reference voltage. The design principle is using both the positive and the negative temperature-coefficient parameters in BJT to compensate each other, and then a zero temperature-coefficient output reference voltage can be achieved. Two different circuit architectures have been simulated and discussed. As compared with the existed reference voltage circuits, the proposed circuits benefit from simpler circuit architecture, less chip area, and lower temperature-coefficient.
Detailed design principle has been disclosed in this thesis, and the HSPICE and LAKER simulation programs with 0.35-μm process parameters have been used to perform the layout and implement the circuits. According to the post-layout simulation results, where the supply voltage is 5V and the temperature ranges from -20°C-120°C, after the first order temperature-compensation the corresponding output reference voltage is 2.965V and 1.483V, the maximum output voltage variation is 0.78mV and 0.38mV, the corresponding power dissipation is 1.3925mW. Also, after second order temperature-compensation, the corresponding output reference voltage can be 3.056V and 1.53V, the maximum output voltage variation is only 2.54mV and 1.24mV, the corresponding power dissipation is 2.6554mW.
All the simulation results are consistent with the theoretic analysis. The proposed low temperature-coefficient reference voltage circuits can be applied to vehicle electronic devices design and other digital and analog circuits.


摘要...i
Abstract...ii
誌謝...iv
目錄...v
表目錄...vii
圖目錄...viii
符號說明...x
第一章 緒論...1
1.1研究背景與動機...1
1.2設計流程...2
1.3研究重點...4
1.4論文架構...4
第二章 一階溫度補償電路與參考電壓...5
2.1參考電壓介紹與原理...5
2.2電流源分析...7
2.3 設計原理...6
第三章 二階溫度補償參考電壓...14
3.1二階溫度補償參考電壓原理...14
3.2二階溫度補償參考電壓設計原理...15
第四章 模擬與量測結果...19
4.1設計流程...19
4.2電路模擬結果...21
4.2.1一階多輸出溫度補償參考電壓...21
4.2.2二階多輸出溫度補償參考電壓...32
第五章 結論...41
參考文獻...42
Extended Abstract...44
簡歷(CV)...48

[1]Neil H.E Weste, David Harris,柯鴻禧、黃琪聰(譯),“COMS積體電路設計概論”台灣培生教育出版股份有限公司,2007。
[2]謝永瑞,“VLSI概論(修訂四版)”全華科技圖書股份有限公司,2008。
[3]高德遠、康繼昌,“VLSI-系統和電路的設計原理”儒林圖書有限公司,1992。
[4]D. L. Butler and R. Jacob Baker,“Low-Voltage Bandgap Reference Design Utilizing Schottky Diodes,”Circuits and Systems, 2005. 48th Midwest Symposium,vol.2,pp.1794-1797.
[5]S. K. Wadhwa,“A Low Voltage CMOS Bandgap Reference circuit,” IEEE International Symposium on Circuits and Systems, 2008. ISCAS 2008,pp.2693-2696,2008.
[6]L.Magnelli , F. Crupi , P. Corsonello,C.Pace and G. Iannaccone,“A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference,”IEEE Journal of Solid-State Circuits,vol 46,pp.465-474,2011.
[7]K. R. Francisco and J. A. Hora ,“Very Low Bandgap Voltage Reference with High PSRR Enhancement Stage Implemented in 90nm CMOS Process Technology for LDO Application,”2012 IEEE International Conference on Electronics Design Systems and Applications (ICEDSA), pp.216-220, 2012.
[8]Zhang Shuo , Wang Zongmin ,Zhou Liang , Feng Wenxiao and Ding Yang,“A high-PSRR bandgap voltage reference with temperature curvature compensation used for pipeline ADC,”2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp.1-2, 2013.
[9]D. F. Hilbiber,“A New Developments in IC Voltage Regulators,”IEEE International
Solid-State Circuits Conference,vol.VII,pp.32-33,Feb.1964.
[10]R.J. Widlar,“New Developments in IC Voltage Regulators,”IEEE International Solid-State Circuits Conference,vol.XIII,pp.158-159,Fed.1970.
[11]B. Razavi, "Design of Analogue CMOS Integrated Circuits,” McCraw-Hill Companies Inc. Bostom. MA, 2001.
[12]Jing-Hu Li, Xing-bao Zhang, and Ming-yan Yu, “A 1.2-V Piecewise Curvature-Corrected Bandgap Reference in 0.5 m CMOS Process” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.9, No. 6, pp. 1118-1122, 2011
[13]Dong-Ok Han, Jeong-Hoon Kim, and Nam-Heung Kim, “ Design of bandgap reference and current reference generator with low supply voltage,” 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 1733 – 1736, 2008.
[14]Na Sun and R. Sobot, “A low-power low-voltage bandgap reference in CMOS,” 2010 23rd Canadian Conference on Electrical and Computer Engineering, pp.1 – 5, 2010.
[15]. E. K. F. Lee, “Low voltage CMOS bandgap references with temperature compensated reference current output,” Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 1643 – 1646, 2010.
[16]D. C. W. Ng, D. K. K. Kwong, and Ngai Wong , “A Sub-1 V, 26 W, Low-Output-Impedance CMOS Bandgap Reference With a Low Dropout or Source Follower Mode,” IEEE Transactions on
[17]Min Tan, Fan Liu, and Fei Xiang, “A novel sub-1-V bandgap reference in 0.18µm CMOS technology ,” 2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification,
[18]E. K. F. Lee, “A low voltage CMOS bandgap reference without using an opamp ” 2009 IEEE International Symposium on Circuits and Systems, pp. 2533 – 2536, 2009.
[19]. T. Perry, S. H. Lewis, A. P. Brokaw, and T. R. Viswanathan, “A 1.4 V Supply CMOS Fractional Bandgap Reference,” IEEE Journal of Solid-State Circuits, vol. 42 , No. 10, pp. 2180 – 2186, 2007.
[20]Xin Ming, Ying-qian Ma, Ze-kun Zhou, and Bo Zhang, “A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, No. 10, pp. 767 – 771, 2010
[21]C. M. Andreou, S. Koudounas, and J. Georgiou, “A Novel Wide-Temperature-Range, 3.9 ppm/ oC CMOS Bandgap Reference Circuit,” IEEE Journal of Solid-State Circuits, vol. 47, No. 2, pp. 574 – 581, 2012.
[22]Becker-Gomez, T. Lakshmi Viswanathan, and T. R. Viswanathan, “A Low-Supply-Voltage CMOS Sub-Bandgap Reference ,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, No.7, pp. 609 – 613, 2008.
[23]W. Yan, W. Li, and R. Liu, “Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature
coefficient ,” Electronics Letters, pp. 627 – 629, vol. 45, No. 12, 2009.
[24]M.-D. Ker and J.-S. Chen, “New curvature-compensation technique for CMOS bandgap reference with sub-1-V operation,” IEEE Trans. Circuits Syst. II: Express Briefs, vol. 53, no. 8, pp. 667–671, 2006.
[25]. B. Basyurt and D. Y. Aksin, “Design of a curvature-corrected bandgap reference with 7.5ppm/C
temperature coefficient in 0.35µm CMOS process,” 2012 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3142 – 3145, 2012.
[26]Wei-Bin Yang, Horng-Yuan Shih , Yu-Yao Lin, Ming-Hao Hong, Chi-Hsiung Wang, and Yu-Lung Lo, “A 1.8-V 4.36-ppm/°C-TC bandgap reference with temperature variation calibration,” 2013 International SoC Design Conference, pp. 103 – 106, 2013


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊