跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建宏
研究生(外文):LIN, JIAN-HONG
論文名稱:以P型氮化鎵光子晶體結構提升氮化銦鎵/氮化鎵藍色發光二極體之效能
論文名稱(外文):Improved Efficiency for InGaN/GaN Light-emitting Diodes Using P-GaN Photonic Crystal Structure
指導教授:雷伯薰
指導教授(外文):LEI, PO-HSUN
口試委員:楊奇達葉旻彥吳芳賓
口試委員(外文):YANG, CHYI-DAYEH, MIN-YENWU, FAN-BEAN
口試日期:2018-07-24
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:57
中文關鍵詞:藍色發光二極體P型氮化鎵光子晶體R-Soft FDTD模擬
外文關鍵詞:The blue light-emitting diodesP-GaN Photonic Crystal StructureR-Soft FDTD software
相關次數:
  • 被引用被引用:1
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
  本篇論文中,研究P型氮化鎵進行表面處理形成光子晶體結構以提昇藍色發光二極體的萃取效率,使用電漿輔助化學氣相沉積法(PECVD)沉積二氧化矽於P型氮化鎵表面,運用旋轉塗佈法在二氧化矽層成長自組裝之單層聚苯乙烯微球,使用反應離子蝕刻機(RIE)將聚苯乙烯微球作為遮罩層蝕刻二氧化矽層,再以二氧化矽層為遮罩利用感應耦合電漿離子蝕刻系統(ICP)蝕刻P型氮化鎵,其中利用旋轉塗佈法具有價格低廉及容易製作並且速度快等優點;當藍色發光二極體出射光經過光子晶體,將產生破壞及建設性干涉減少全反射現象,進而提升發光二極體萃取效率。

本論文中,製備自組裝苯乙烯奈米球不需使用大型極昂貴設備、簡易組裝有序的奈米球光子晶體構造。然而以旋轉塗佈法組裝奈米球其中奈米球的濃度、旋轉轉數及基板親水性皆會影響奈米球的排列,我們將做一系列的研究。接著,我們以R-Soft FDTD軟體模擬P型氮化鎵光子晶體於藍色發光二極體上的萃取效率,模擬結果發現改變P型氮化鎵光子晶體間距及直徑可有效增加萃取效率。實驗部分,得知P型氮化鎵蝕刻深度為130nm及奈米柱直徑為350nm和間距為150nm時,於驅動電流20mA下量測,其發光效率可增加37%,此部分與模擬結果符合。

  In this dissertation, Studying p-type gallium nitride is surface treated to form a photonic crystal structure to enhance the extraction efficiency of the blue light-emitting diode. Using Plasma Enhanced Chemical Vapor Deposition (PECVD) deposition of cerium oxide on P-type gallium nitride surface, growning Single-layer polystyrene microspheres by spin coating. Etching the cerium oxide layer using polystyrene microspheres as a mask layer using RIE,then etching p-type gallium nitride using ruthenium dioxide layer as mask by ICP. Among them, the spin coating method has the advantages of low cost, easy production, and high speed; When the blue light emitting diode emits light through the photonic crystal, damage and constructive interference will be generated to reduce the total reflection phenomenon, thereby improving the extraction efficiency of the light emitting diode.
  Preparation of self-assembled styrene nanospheres without the use of large and extremely expensive equipment, simple assembly and ordering of polystyrene nanosphere photonic crystal structures.However,spinning coating method to assemble polystyrene nanospheres. The concentration of polystyrene nanospheres, the number of rotations and the hydrophilicity of the substrate all affect the alignment of the polystyrene nanospheres. Then we use R-Soft FDTD software to simulate the extraction efficiency of P-type gallium nitride photonic crystals on blue light-emitting diodes. The simulation results show that changing the P-type gallium nitride photonic crystal pitch and diameter can effectively increase the extraction efficiency. In the experimental part, when the p-type gallium nitride etching depth is 130 nm and the nano-pillar diameter is 350 nm and the period is 150 nm, the luminous efficiency can be increased by 37% under the driving current of 20 mA. This part is in accordance with the simulation results.

摘要......i
Abstract......ii
誌謝......iv
目錄......v
表目錄......vii
圖目錄......viii
第一章 簡介......1
1.1氮化銦鎵/氮化鎵(InGaN/GaN)發光二極體......1
1.2光子晶體(Photonic crystals)......3
1.3光子晶體製備......4
2.1半導體原理......6
2.1.1光子在半導體中與電子的相互作用......6
2.2發光二極體原理......7
2.2.1 LED發光效率......8
2.2.2內部量子效率( internal quantum efficiency ,IQE)......8
2.2.3光萃取效率( Light extraction efficiency ,LEE)......9
2.2.4外部量子效率( Extermal quantum efficiency ,EQE)......9
2.3光萃取效率原理......10
2.4波動光學-電磁光學模擬套件RSoft......12
第三章 實驗方法與步驟......14
3.1實驗流程......14
3.2氮化銦鎵/氮化鎵(InGaN/GaN)藍色發光二極體......15
3.2.1氮化銦鎵/氮化鎵(InGaN/GaN)藍色發光二極體元件製程......15
3.3實驗系統介紹......20
3.3.1電漿化學氣相沉積系統......20
3.3.2旋轉塗佈系統......20
3.3.3反應式離子蝕刻機......21
3.3.4感應耦合式電漿離子蝕刻系統......21
3.4實驗量測分析......22
3.4.1 LED測試機......22
3.4.2場發掃描式電子顯微鏡(FE-SEM)......22
3.5波動光學-電磁光學模擬套件RSoft 模擬......23
3.5.1模擬之元件結構......23
第四章 實驗結果與討論......24
4.1製備P型氮化鎵光子晶體......24
4.1.1不同旋轉塗佈法轉速正面圖......24
4.1.2不同旋轉塗佈法轉速剖面圖......27
4.2波動光學-電磁光學模擬RSoft模擬......28
4.3、P型氮化鎵光子晶體製備......39
4.3.1反應式離子蝕刻機(RIE)蝕刻......39
4.3.2感應耦合式電漿離子蝕刻系統(ICP)蝕刻......42
4.4氮化鎵光子晶體應用於氮化銦鎵/氮化鎵(InGaN/GaN)藍色發光二極體......44
第五章 結論......50
參考文獻......51
Extended Abstract......55
[1]S.Nakamura, T. Mukai, and M. Senoh,“P-GaN/N-InGaN/N-GaN Double -Heterostructure Blue-Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol.32, pp. L8-L11 (1993).
[2]X.Guo,E.F.Schubert,Appl.Phys.Lett.78,337,2001
[3]H.Kim,J.M.Lee,C.Huh,S.W.Kim,D.J.Kim,S.J.Park,H.Hwang,
Appl.Phys.Lett.77,1903,2000.
[4]J.J.Wiere,D.A.Steigerwald,M.R.Krames,J.J.O’Shea,M.J.Ludowise G.Christenson,Y.-C.Shen,C.Lowery,P.S.Martin,S.Subramanya W.Gotz,N.F.Gardner,R.S.Kern,and S.A.Stockman,Appl.phy.Le
tt.78,3379,2001.
[5]G.M. Wu , Z.J. Cai, J.C. and Wang, T.E. Nee 2005, “Design and simulation in GaN based light emitting diodes using focused ion beam generated photonic crystals”, IEEE Photonics Technology Letters, VOL. 17, NO. 5, MAY
[6]D. G. Thomas, 1960, “The exciton spectrum of zinc oxide”, Journal of Physics and Chemistry of Solids Vol.15, pp. 86.
[7]Yablonovitch, E., Phys. Rev. Lett. 1987, 58, 2059-2062.
[8]John, S., Phys. Rev. Lett. 1987, 58, 2486-2489.
[9]Gu, Z. Z.; Hayami, S.; Kubo, S., J. Am. Chem. Soc. 2001, 123, 175-176.
[10]Amos, R. M.; Rarity, J. G.; Tapster, P. R., Phys. Rev. E 2000, 61, 2929-2935.
[11]http://newton.cc.ncu.edu.tw/~trich/NCUPCR/NCUPCR.htm 5j/ 中央大學電機所詹益仁教授提供
[12]Amos, R. M.; Rarity, J. G.; Tapster, P. R., Phys. Rev. E 2000, 61, 2929-2935.
[13]Amos, R. M.; Rarity, J. G.; Tapster, P. R., Phys. Rev. E 2000, 61, 2929-2935.
[14]R.Holland,”Threde: a free-field EMP coupling and scattering code ,”IEEE Trans.Nuclear Science,Vol.24,pp.2416-2421,1977.
[15]Kunz, K. S., and Lee, K. M., “A Three-Dimensional Finite-Difference Solution of the External Response of an Aircraft to a Complex Transient EM Environment I: The Method and its Implementation,” IEEE Trans. Electromagn. Compat., Vol. 20, pp. 328-333, 1978.
[16]G.Mur,”Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,”IEEE Trans. Electromagnetic Compatibility Vol.23,pp.377-382,1981
[17]R.Holland,”Threde: a free-field EMP coupling and scattering code,”IEEE Trans. Nuclear Science, Vol.24,pp.2416-2421,1977.
[18]K.S.Kunz,and K. M. Lee,”A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment I:The method and its implementation,”IEEE Trans.Electromagnetic Compatibility, Vol.20,pp.328-333,1978
[19]K.S.Yee, ”Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media ,”IEEE Trans. Antennas and Propagation, Vol.14,pp.302-307(1966)
[20]Jean-Pierre Berenger,”A perfectly matched layer for the absorption of electromagnetic waves”,J.Com.Physics Vol.114,pp. 185-200,1994.
[21]D.S.Katz,E.T.Thiele, and A.Tafloove,”Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes,”IEEE Microwave and Guided Wave Letters,Vol.4,pp.268-270,1994.
[22]Jean-Pierre Berenger,”A perfectly matched layer for the absorption of electromagnetic waves”,J.Com.Physics Vol.114,pp. 185-200,1994.
[23]K.S.Yee, ”Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media ,”IEEE Trans. Antennas and Propagation, Vol.14,pp.302-307(1966)
[24]謝宏健,2008年,“以奈米小球提升矽薄膜太陽能電池吸收之研究",國立中央大學光電科學研究所。
[25]黃俊憲,2002年,“結合散射參數之時域有限差分法在微波電路模擬上的應用",國立中山大學電機工程學系。
[26]RSoft Design Grop,FullWAVE v3.0.1 User Guide,1999‐2004
[27]李明龍,2009年,“利用光子晶體增強薄膜式太陽能電池之吸收效率",國立成功大學機械工程研究所。
[28]Z.S. Sacks, D.M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Transactions. Antennas and Propagation,. Vol. 43, No. 12, 1460-1463 (1995).
[29]A. Taflove,"Computational Electrodynamics: The Finite-Difference Time-Domain Method.". Norwood, MA: Artech House.(1995)
[30]劉恩科、朱秉升、羅晉生,半導體物理學,新文京開發出版股份有限公司,台北縣中和市(2006)
[31]K. Awazu, H. Kawazoe and K. Seki, “Growth Mechanisms of Silica Glass Using the Liquid Phase Deposition ( LPD )”, J. Non-cryst. Solids, 151, 102-108 (1992).
[32]E. Fred Schubert, “Light-Emitting Diodes” 2nd. , Cambridge Univ.
Press, New York, 2006.
[33]J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity,” OXFORD Science Publications, 66, 816 (1982).
[34]R. N. Wenzel, “Surface Roughness and Contact Angle,” J. Phys. Chem. 53 (1949) 1466-1467.
[35]A. B. D. Cassie and S. Baxter, “Contact Angle,” Trans. Faraday Soc. 40 (1944) 546.
[36]A. N. Shipway, E. Katz and I. Willner, “Nanoparticle Arrays on Surfaces for Electronic, Optical and Sencoric Aoolications”, Chemphyschem, 1, pp.18-55 (2000)
[37]Y. Xia, B. Gates, Y. Yin and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications”, Adv. Mater. 12. pp.693-713 (2000)
[38]P. A. Kralchecsky and N. D. Denkov, “Capillary Forces and Structuring in Layers of Colloid Particles”, Curr. Interf. Sci. 6, pp.383-401 (2001)
[39]J. Dutta and H. Hofmann, “Self-Organization of Colloidal Nanoparticles”, Encyclopedia of Nanosci. And Nanotech. X, pp.1-23 (2003)
[40]N. D. Denkov, O. D. Velve, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura and K. Nagayama, “Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates”, Langmuir 8, pp.3183-3190 (1992)
[41]P. A. Kralchevsky, V. N. Paunov, I. B. Ivanov and K. Nagayama, “Capillary Meniscus Interactions between Colloidal Particles Attached to a Liquid-Fluid Interface”, J. Colloid Interface Sci. 151, pp.79-94 (1992)
[42]P. A. Kralchevsky, V. N. Paunov, N. D. Denkov, I. B. Ivanov and K. Nagayama, “Energetical and Force Approaches to the Capillary Interactions between Particles Attached to a Liquid-Fluid Interface”, J. Colloid Interface Sci. 155, pp.420-437 (1993)
[43]P. A. Kralchevsky and K. Nagayama, “Capillary Forces between Colloidal Particles”, Langmuir 10, pp.23-26 (1994)
[44]K. Nagayama, “Two-Dimensional Self-Assembly of Colloids in Thin Liquid Films”, Colloids Surf. A 109, pp.363-374 (1996)
[45]http://baike.baidu.com/view/237319.htm

[46]化學溶液蝕刻法製備大面積規則排列矽單晶奈米柱陣列之研究 中央大學 陳建佑
[47]電漿表面處理在生醫材料上之應用 工研院材料所高分子界面工程技術部 吳耀庭 黃曉鳳 溫俊祥
[48]銀奈米結構增益發光元件出光效率之研究 大同大學 彭凱鈺
[49]A. S. Dimitrov and K. Nagayama, “Steady-State Unidirectional Convective Assembling of Fine Particle into Two-Dimensional Arrays”, Chem. Phys. Lett. 243, pp.462-468 (1995)
[50]E. Adachi, A. S. Dimitrov and K. Nagayama, “Stripe Patterns Formed on a Glass Surface During Droplet Evaporation”, Langmuir 11, pp.1057-1060 (1995)
[51]http://scitechvista.most.gov.tw/zh-tw/Feature/C/0/1/10/1/27.htm
[52]http://cn.hdscreen.me/wallpaper/3001795-%E5%AD%94%E9%9B%80%E7%BE%BD%E6%AF%9B%E5%AD%94%E9%9B%80
[53]http://www.epochtimes.com/b5/8/10/26/n2309483.htm

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top