跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃湘彥
研究生(外文):Hsiang Yen Huang
論文名稱:優化參雜金奈米顆粒的電洞傳輸層厚度以製作有機發光二極體
論文名稱(外文):Organic light emitting diodes fabrication by optimizing the thickness of hole transport layer doped with gold nanoparticles
指導教授:劉國辰
指導教授(外文):K. C. Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:有機發光二極體旋轉塗布法金奈米顆粒
外文關鍵詞:OLEDspin coating processgold nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
旋轉塗布法是將聚合物溶液形成薄膜的主要方法。溶液的黏稠度在旋轉塗布法之中更是影響薄膜形成後的厚度與均勻性之重要的參數。我們在聚合物有機發光二極體的電洞傳輸層材料參雜金奈米顆粒,以研究局域表面電漿共振效應對元件發光亮度及發光效率的增強效應。聚合物溶液參雜了金奈米顆粒後降低溶液黏稠度,影響了旋轉塗布條件而改變了厚度,因此其厚度的優化才能使金奈米顆粒的影響更加清晰。
在第一章裡,首先簡單地介紹了聚合物發光二極體的發展簡歷、元件發光原理,接者說明電洞傳輸層的作用以及參雜金奈米顆粒後對於元件的影響。第二章則是介紹元件所使用的各項材料、和完整製程。第三章為結果與討論,以相同條件塗布參雜的電洞傳輸層材料,將使其薄膜厚度從49 nm降至22 nm,調查轉速與厚度的相關性以後,從轉速1750 r.p.m降至1300 r.p.m才能夠回復成最佳化的厚度。其次,元件電流與電壓的關係表明,12 V時金奈米顆粒的參雜對元件電流無太大的影響但卻提升了14 %的發光亮度以及22 %的發光效率,從而將這樣的結果歸因於局域表面電漿共振效應。最後,我們在第五章作出了簡短的總結。

Wet process and spin coating process are common method to fabricate polymer light-emitting diode and polymer thin films, respectively. The viscosity of the polymer solution used in the spin coating process is a crucial parameter to maintain its thickness and uniformity. We doped gold nanoparticles into the hole transport layer in order to investigate the effect of localized surface plasmon resonance on device optical and electrical property. Gold nanoparticles doped polymer solution will modulate the viscosity of the solution and causes significant change in the spin coating conditions. Therefore, gold nanoparticles can be used to improve performance of PLED without altering the thickness.
Chapter 1 mainly covers the development, current injection, and mechanism of PLED. It also consists the effect of gold nanoparticles doping on the hole transport layer. Chapter 2 describes about the material used in the device fabrication process. In chapter 3, we have regulated the condition of spin-coating for the gold nanoparticles doped polymer solution and investigated the relationship between spin speed and final thickness. Gold nanoparticles enhance luminance and efficiency without affecting the current in higher voltage. The improvements caused by gold nanoparticles are owing to localized surface Plasmon resonance effect. At last, chapter 4 describes the overall conclusion of our study.

目錄
指導教授推薦書
口試委員會審定書
致謝 iii
摘要 iv
Abstract v
第一章、介紹 - 1 -
1.1、OLED的發展 - 1 -
1.2、OLED電流注入 - 5 -
1.3、OLED發光原理 - 6 -
1.4、PEDOT:PSS電洞注入層 - 7 -
1.5、金奈米顆粒增強發光 - 10 -
第二章、實驗 - 22 -
2.1、材料 - 22 -
2.2、實驗步驟 - 23 -
2.3、金奈米顆粒製備 - 26 -
2.4、量測 - 27 -
第三章、結果與討論 - 40 -
3.1、金奈米顆粒混合PEDOT:PSS旋轉塗布條件 - 40 -
3.2、OLED電流-電壓特性 - 42 -
3.3、PEDOT:PSS混合金奈米顆粒之粗糙度 - 45 -
3.4、金奈米顆粒吸收光譜與入射光匹配 - 47 -
3.5、參雜金奈米顆粒元件發光亮度及電流效率 - 48 -
第四章、結論與接續工作 - 62 -
參考文獻 - 68 -


圖目錄
圖2.1、PFO光致發光光譜,發光峰值約為530 nm - 29 -
圖2.2、超音波清洗機 - 29 -
圖2.3、塗布光阻之旋轉塗布機 - 30 -
圖2.4、曝光機 - 30 -
圖2.5、烤箱 - 31 -
圖2.6、定義之ITO圖形 - 31 -
圖2.7、氧電漿腔體 - 32 -
圖2.8、塗布有機材料之旋轉塗布機 - 32 -
圖2.9、熱蒸度機腔體 - 33 -
圖2.10、UV乾燥箱 - 33 -
圖2.11、實驗流程圖 - 35 -
圖2.12、OLED元件結構 - 36 -
圖2.13、OLED元件能階圖 - 36 -
圖2.14、薄膜厚度輪廓測度儀(Alpha step) - 37 -
圖2.15、電源供應器(型號:KEITHLEY 2400) - 37 -
圖2.16、輝度計 - 38 -
圖2.17、單點量測器 - 38 -
圖2.18、量測之暗箱 - 39 -
圖2.19、紫外/可見光光譜儀 - 39 -
圖3.1、PEDOT:PSS於1750 r.p.m之第二段轉速下厚度分布 - 49 -
圖3.2、PEDOT:PSS參雜10 %金奈米顆粒於1750 r.p.m之第二段轉速下厚度分布 - 49 -
圖3.3、PEDOT:PSS參雜10 %金奈米顆粒於不同旋轉塗布速度之厚度變化 - 50 -
圖3.4、PEDOT:PSS參雜10 %金奈米顆粒於1300 r.p.m之第二段轉速下厚度分布 - 50 -
圖3.5、PEDOT:PSS參雜20 %金奈米顆粒於1000 r.p.m之第二段轉速下厚度分布 - 51 -
圖3.6、PEDOT:PSS參雜20 %金奈米顆粒於700 r.p.m旋轉60 s之厚度分布 - 51 -
圖3.7、PEDOT:PSS參雜5 %金奈米顆粒於1400 r.p.m之第二段轉速下厚度分布 - 52 -
圖3.8、PEDOT:PSS參雜15 %金奈米顆粒於1200 r.p.m之第二段轉速下厚度分布 - 52 -
圖3.9、參雜5 %金奈米顆粒與未參雜金奈米顆粒元件之亮度-電壓曲線(Iyan Subiyanto提供) - 53 -
圖3.10、參雜15 %金奈米顆粒與未參雜金奈米顆粒元件之亮度-電壓曲線(Iyan Subiyanto提供) - 54 -
圖3.11、未參雜奈米顆粒元件之log I-log V曲線及斜率 - 54 -
圖3.12、參雜/未參雜金奈米顆粒元件之電流-電壓曲線 - 55 -
圖3.13、參雜/未參雜奈米顆粒元件之log I-log V曲線及斜率 - 55 -
圖3.14、PEDOT:PSS薄膜之AFM影像 - 55 -
圖3.15、PEDOT:PSS參雜5 %金奈米顆粒薄膜之AFM影像 - 56 -
圖3.16、PEDOT:PSS參雜10 %金奈米顆粒薄膜之AFM影像 - 56 -
圖3.17、PEDOT:PSS參雜15 %金奈米顆粒薄膜之AFM影像 - 57 -
圖3.18、PEDOT:PSS參雜金奈米顆粒之粗糙度變化 - 57 -
圖3.19、純PEDOT:PSS + PFO之AFM影像 - 58 -
圖3.20、PEDOT:PSS with 10 % NPs + PFO之AFM影像 - 58 -
圖3.21、粗糙介面影響電流注入之能階表示圖 - 59 -
圖3.22、PFO電致發光光譜 - 59 -
圖3.23、10 nm金奈米顆粒吸收光譜(資料來源:Cytodiagnostics生物科技公司) - 60 -
圖3.25、參雜/未參雜金奈米顆粒元件之亮度-電壓曲線 - 60 -
圖3.25、參雜/未參雜金奈米顆粒元件之電流效率-電壓曲線 - 61 -
圖5.1、刮刀冶具 - 66 -
圖5.2、刮刀冶具間隙示意圖 - 66 -
圖5.3、刮刀塗布過程示意圖 - 67 -
圖5.4、元件固定 - 67 -


表目錄
表1.1、金奈米顆粒塗布於ITO上之OLED元件 - 16 -
表1.2、各濃度Au NPs之OLED性能 - 18 -
表1.3、樣品體積百分比濃度、混合溶液、基板 - 19 -
表2.1、蒸鍍鋁之鍍率分佈 - 26 -
表3.1、參雜金奈米顆粒對電流的影響 - 44 -
表3.2、參雜不同NPs濃度的PEDOT:PSS表面及覆蓋之PFO表面粗糙度 - 46 -
[1] M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in organic crystals [16],” The Journal of Chemical Physics, vol. 38, no. 8. pp. 2042–2043, 1963.
[2] S. A. Tang, C.W., Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, no. 12, pp. 913–915, 1987.
[3] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., vol. 70, no. 2, pp. 152–154, 1997.
[4] J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett., vol. 73, no. 20, p. 2866, 1998.
[5] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett., vol. 80, no. 1, pp. 139–141, 2002.
[6] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes,” Appl. Phys. Lett., vol. 64, no. 7, p. 815, 1994.
[7] Y. Shao and Y. Yang, “White organic light-emitting diodes prepared by a fused organic solid solution method,” Appl. Phys. Lett., vol. 86, no. 7, pp. 1–3, 2005.
[8] J. H. Burroughes, D. D. C. Bradley, a. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and a. B. Holmes, “Light-emitting diodes baed on conjugated polymers,” Nature, vol. 347, p. 539, 1990.
[9] Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, “Blue Electroluminescent Diodes Utilizing Poly(alkylfluorene),” Jpn. J. Appl. Phys., vol. 30, no. Part 2, No. 11B, pp. L1941–L1943, Nov. 1991.
[10] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and a J. Heeger, “Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers,” Nature, vol. 357, no. 6378, pp. 477–479, 1992.
[11] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett., vol. 65, no. 23, p. 2922, 1994.
[12] M. T. Bernius, M. Inbasekaran, J. O’Brien, and W. Wu, “Progress with Light-Emitting Polymers,” Adv. Mater., vol. 12, no. 23, pp. 1737–1750, Dec. 2000.
[13] A. Rose, “Space-Charge-Limited Currents in Solids,” Phys. Rev., vol. 97, no. 6, pp. 1538–1544, Mar. 1955.
[14] P. E. Burrows and S. R. Forrest, “Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett., vol. 64, no. 17, p. 2285, 1994.
[15] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future,” Adv. Mater., vol. 12, no. 7, pp. 481–494, Apr. 2000.
[16] B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: Materials, devices and display technologies,” Polym. Int., vol. 55, no. 6, pp. 572–582, 2006.
[17] S. Ghosh and O. Inganäs, “Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes,” Synth. Met., vol. 101, no. 1–3, pp. 413–416, May 1999.
[18] G. Greczynski, T. Kugler, and W. . Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films, vol. 354, no. 1–2, pp. 129–135, Oct. 1999.
[19] Y. Cao, G. Yu, C. Zhang, R. Menon, and a. . J. Heeger, “Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode,” Synth. Met., vol. 87, no. 2, pp. 171–174, 1997.
[20] J. C. Scott, S. a. Carter, S. Karg, and M. Angelopoulos, “Polymeric anodes for organic light-emitting diodes,” Synth. Met., vol. 85, no. 1–3, pp. 1197–1200, 1997.
[21] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light- emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett., vol. 75, no. 12, pp. 1679–1681, 1999.
[22] a. Elschner, F. Bruder, H. W. Heuer, F. Jonas, a. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, “PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes,” Synth. Met., vol. 111, pp. 139–143, 2000.
[23] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, no. 6986, pp. 911–918, Apr. 2004.
[24] S. a. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett., vol. 88, no. 21, p. 213503, 2006.
[25] a. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, a. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett., vol. 96, no. May 2012, pp. 2010–2013, 2010.
[26] D. Wang, K. Yasui, M. Ozawa, K. Odoi, S. Shimamura, and K. Fujita, “Hole injection enhancement by sparsely dispersed Au nanoparticles on indium tin oxide electrode in organic light emitting devices,” Appl. Phys. Lett., vol. 102, no. 2, p. 023302, 2013.
[27] X. Wu, L. Liu, T. Yu, L. Yu, Z. Xie, Y. Mo, S. Xu, and Y. Ma, “Gold nanoparticles modified ITO anode for enhanced PLEDs brightness and efficiency,” J. Mater. Chem. C, vol. 1, no. 42, p. 7020, 2013.
[28] P. J. Jesuraj and K. Jeganathan, “Improved hole injection in organic light emitting devices by gold nanoparticles,” RSC Adv., vol. 5, no. 1, pp. 684–689, 2014.
[29] Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett., vol. 100, no. 1, p. 4, 2012.
[30] G.-P. Kim, B.-M. Park, and H.-J. Chang, “Effect of Au nano-particles in PEDOT:PSS hole injection layer on the properties of green polymer light-emitting diodes,” Electron. Mater. Lett., vol. 10, no. 2, pp. 491–495, 2014.
[31] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. a. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices,” J. Appl. Phys., vol. 79, no. 10, pp. 7991–8006, 1996.
[32] V. R. Nikitenko, H. Heil, and H. Von Seggern, “Space-charge limited current in regioregular poly-3-hexyl-thiophene,” J. Appl. Phys., vol. 94, no. 4, pp. 2480–2485, 2003.
[33] Z. Chiguvare and V. Dyakonov, “Trap-limited hole mobility in semiconducting poly(3-hexylthiophene),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 70, no. 23, pp. 1–8, 2004.
[34] a. Carbone, B. K. Kotowska, and D. Kotowski, “Space-charge-limited current fluctuations in organic semiconductors,” Phys. Rev. Lett., vol. 95, no. 23, pp. 2–5, 2005.
[35] P.-J. Cheng, H.-M. Shih, J.-A. Cheng, C.-H. Tien, and C.-S. Hsu, “P-155: Luminescent Efficiency Enhancement of Polymer Light-Emitting Diodes using Solution-Processible Metal Nanoparticles Incorporated Nanocomposites,” SID Symp. Dig. Tech. Pap., vol. 41, no. 1, p. 1830, 2010.
[36] S. H. Kim, T. S. Bae, W. Heo, T. Joo, K. D. Song, H. G. Park, and S. Y. Ryu, “Effects of Gold-Nanoparticle Surface and Vertical Coverage by Conducting Polymer between Indium Tin Oxide and the Hole Transport Layer on Organic Light-Emitting Diodes,” ACS Appl. Mater. Interfaces, vol. 7, no. 27, pp. 15031–15041, 2015.
[37] J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J. W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle Nanocomposite Light-Emitting Diodes: Enhancement of Electroluminescence Stability and Quantum Efficiency of Blue-Light-Emitting Polymers,” Chem. Mater., vol. 16, no. 4, pp. 688–692, 2004.
[38] Y. R. Jeng, M. L. Guo, H. C. Li, and T. F. Guo, “Interfacial morphology in polymer light-emitting diodes,” vol. 10, no. 12, 2007.
[39] P. Kvasnicka and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations.,” Biointerphases, vol. 3, no. 3, pp. FD4–11, 2008.
[40] S. a. Rutledge and a. S. Helmy, “Carrier Mobility Enhancement in Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Having Undergone Rapid Thermal Annealing,” J. Appl. Phys., vol. 114, no. 13, p. 133708, 2013.
[41] M. a Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. a Ward, “OPTICAL PROPERTIES OF THE METALS Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, AND W IN THE INFRARED AND FAR INFRARED.,” Appl. Opt., vol. 22, no. 7, pp. 1099–1120, 1983.
[42] B. Niesen, B. P. Rand, P. Van Dorpe, D. Cheyns, H. Shen, B. Maes, and P. Heremans, “Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films. Part I: Absorption,” vol. 116, no. 45, pp. 24206–24214, 2012.
[43] S. T. Kochuveedu and D. H. Kim, “Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems.,” Nanoscale, vol. 6, no. 10, pp. 4966–84, 2014.
[44] S. R. Tseng, S. C. Lin, H. F. Meng, H. H. Liao, C. H. Yeh, H. C. Lai, S. F. Horng, and C. S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett., vol. 88, no. 16, pp. 10–13, 2006.
[45] S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett., vol. 93, no. 15, pp. 9–12, 2008.
[46] C. Y. Chen, H. W. Chang, Y. F. Chang, B. J. Chang, Y. S. Lin, P. S. Jian, H. C. Yeh, H. T. Chien, E. C. Chen, Y. C. Chao, H. F. Meng, H. W. Zan, H. W. Lin, S. F. Horng, Y. J. Cheng, F. W. Yen, I. F. Lin, H. Y. Yang, K. J. Huang, and M. R. Tseng, “Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell,” J. Appl. Phys., vol. 110, no. 9, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top