|
[1] M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in organic crystals [16],” The Journal of Chemical Physics, vol. 38, no. 8. pp. 2042–2043, 1963. [2] S. A. Tang, C.W., Vanslyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, no. 12, pp. 913–915, 1987. [3] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” Appl. Phys. Lett., vol. 70, no. 2, pp. 152–154, 1997. [4] J. Kido and T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer,” Appl. Phys. Lett., vol. 73, no. 20, p. 2866, 1998. [5] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Liu, “Low-voltage organic electroluminescent devices using pin structures,” Appl. Phys. Lett., vol. 80, no. 1, pp. 139–141, 2002. [6] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, “White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes,” Appl. Phys. Lett., vol. 64, no. 7, p. 815, 1994. [7] Y. Shao and Y. Yang, “White organic light-emitting diodes prepared by a fused organic solid solution method,” Appl. Phys. Lett., vol. 86, no. 7, pp. 1–3, 2005. [8] J. H. Burroughes, D. D. C. Bradley, a. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and a. B. Holmes, “Light-emitting diodes baed on conjugated polymers,” Nature, vol. 347, p. 539, 1990. [9] Y. Ohmori, M. Uchida, K. Muro, and K. Yoshino, “Blue Electroluminescent Diodes Utilizing Poly(alkylfluorene),” Jpn. J. Appl. Phys., vol. 30, no. Part 2, No. 11B, pp. L1941–L1943, Nov. 1991. [10] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and a J. Heeger, “Flexible Light-Emitting-Diodes Made from Soluble Conducting Polymers,” Nature, vol. 357, no. 6378, pp. 477–479, 1992. [11] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett., vol. 65, no. 23, p. 2922, 1994. [12] M. T. Bernius, M. Inbasekaran, J. O’Brien, and W. Wu, “Progress with Light-Emitting Polymers,” Adv. Mater., vol. 12, no. 23, pp. 1737–1750, Dec. 2000. [13] A. Rose, “Space-Charge-Limited Currents in Solids,” Phys. Rev., vol. 97, no. 6, pp. 1538–1544, Mar. 1955. [14] P. E. Burrows and S. R. Forrest, “Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices,” Appl. Phys. Lett., vol. 64, no. 17, p. 2285, 1994. [15] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future,” Adv. Mater., vol. 12, no. 7, pp. 481–494, Apr. 2000. [16] B. Geffroy, P. le Roy, and C. Prat, “Organic light-emitting diode (OLED) technology: Materials, devices and display technologies,” Polym. Int., vol. 55, no. 6, pp. 572–582, 2006. [17] S. Ghosh and O. Inganäs, “Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes,” Synth. Met., vol. 101, no. 1–3, pp. 413–416, May 1999. [18] G. Greczynski, T. Kugler, and W. . Salaneck, “Characterization of the PEDOT-PSS system by means of X-ray and ultraviolet photoelectron spectroscopy,” Thin Solid Films, vol. 354, no. 1–2, pp. 129–135, Oct. 1999. [19] Y. Cao, G. Yu, C. Zhang, R. Menon, and a. . J. Heeger, “Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode,” Synth. Met., vol. 87, no. 2, pp. 171–174, 1997. [20] J. C. Scott, S. a. Carter, S. Karg, and M. Angelopoulos, “Polymeric anodes for organic light-emitting diodes,” Synth. Met., vol. 85, no. 1–3, pp. 1197–1200, 1997. [21] T. M. Brown, J. S. Kim, R. H. Friend, F. Cacialli, R. Daik, and W. J. Feast, “Built-in field electroabsorption spectroscopy of polymer light- emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer,” Appl. Phys. Lett., vol. 75, no. 12, pp. 1679–1681, 1999. [22] a. Elschner, F. Bruder, H. W. Heuer, F. Jonas, a. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, “PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes,” Synth. Met., vol. 111, pp. 139–143, 2000. [23] S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature, vol. 428, no. 6986, pp. 911–918, Apr. 2004. [24] S. a. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett., vol. 88, no. 21, p. 213503, 2006. [25] a. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, a. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett., vol. 96, no. May 2012, pp. 2010–2013, 2010. [26] D. Wang, K. Yasui, M. Ozawa, K. Odoi, S. Shimamura, and K. Fujita, “Hole injection enhancement by sparsely dispersed Au nanoparticles on indium tin oxide electrode in organic light emitting devices,” Appl. Phys. Lett., vol. 102, no. 2, p. 023302, 2013. [27] X. Wu, L. Liu, T. Yu, L. Yu, Z. Xie, Y. Mo, S. Xu, and Y. Ma, “Gold nanoparticles modified ITO anode for enhanced PLEDs brightness and efficiency,” J. Mater. Chem. C, vol. 1, no. 42, p. 7020, 2013. [28] P. J. Jesuraj and K. Jeganathan, “Improved hole injection in organic light emitting devices by gold nanoparticles,” RSC Adv., vol. 5, no. 1, pp. 684–689, 2014. [29] Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett., vol. 100, no. 1, p. 4, 2012. [30] G.-P. Kim, B.-M. Park, and H.-J. Chang, “Effect of Au nano-particles in PEDOT:PSS hole injection layer on the properties of green polymer light-emitting diodes,” Electron. Mater. Lett., vol. 10, no. 2, pp. 491–495, 2014. [31] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. a. Cronin, and M. E. Thompson, “Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices,” J. Appl. Phys., vol. 79, no. 10, pp. 7991–8006, 1996. [32] V. R. Nikitenko, H. Heil, and H. Von Seggern, “Space-charge limited current in regioregular poly-3-hexyl-thiophene,” J. Appl. Phys., vol. 94, no. 4, pp. 2480–2485, 2003. [33] Z. Chiguvare and V. Dyakonov, “Trap-limited hole mobility in semiconducting poly(3-hexylthiophene),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 70, no. 23, pp. 1–8, 2004. [34] a. Carbone, B. K. Kotowska, and D. Kotowski, “Space-charge-limited current fluctuations in organic semiconductors,” Phys. Rev. Lett., vol. 95, no. 23, pp. 2–5, 2005. [35] P.-J. Cheng, H.-M. Shih, J.-A. Cheng, C.-H. Tien, and C.-S. Hsu, “P-155: Luminescent Efficiency Enhancement of Polymer Light-Emitting Diodes using Solution-Processible Metal Nanoparticles Incorporated Nanocomposites,” SID Symp. Dig. Tech. Pap., vol. 41, no. 1, p. 1830, 2010. [36] S. H. Kim, T. S. Bae, W. Heo, T. Joo, K. D. Song, H. G. Park, and S. Y. Ryu, “Effects of Gold-Nanoparticle Surface and Vertical Coverage by Conducting Polymer between Indium Tin Oxide and the Hole Transport Layer on Organic Light-Emitting Diodes,” ACS Appl. Mater. Interfaces, vol. 7, no. 27, pp. 15031–15041, 2015. [37] J. H. Park, Y. T. Lim, O. O. Park, J. K. Kim, J. W. Yu, and Y. C. Kim, “Polymer/Gold Nanoparticle Nanocomposite Light-Emitting Diodes: Enhancement of Electroluminescence Stability and Quantum Efficiency of Blue-Light-Emitting Polymers,” Chem. Mater., vol. 16, no. 4, pp. 688–692, 2004. [38] Y. R. Jeng, M. L. Guo, H. C. Li, and T. F. Guo, “Interfacial morphology in polymer light-emitting diodes,” vol. 10, no. 12, 2007. [39] P. Kvasnicka and J. Homola, “Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations.,” Biointerphases, vol. 3, no. 3, pp. FD4–11, 2008. [40] S. a. Rutledge and a. S. Helmy, “Carrier Mobility Enhancement in Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Having Undergone Rapid Thermal Annealing,” J. Appl. Phys., vol. 114, no. 13, p. 133708, 2013. [41] M. a Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. a Ward, “OPTICAL PROPERTIES OF THE METALS Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, AND W IN THE INFRARED AND FAR INFRARED.,” Appl. Opt., vol. 22, no. 7, pp. 1099–1120, 1983. [42] B. Niesen, B. P. Rand, P. Van Dorpe, D. Cheyns, H. Shen, B. Maes, and P. Heremans, “Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films. Part I: Absorption,” vol. 116, no. 45, pp. 24206–24214, 2012. [43] S. T. Kochuveedu and D. H. Kim, “Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems.,” Nanoscale, vol. 6, no. 10, pp. 4966–84, 2014. [44] S. R. Tseng, S. C. Lin, H. F. Meng, H. H. Liao, C. H. Yeh, H. C. Lai, S. F. Horng, and C. S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett., vol. 88, no. 16, pp. 10–13, 2006. [45] S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng, “Multilayer polymer light-emitting diodes by blade coating method,” Appl. Phys. Lett., vol. 93, no. 15, pp. 9–12, 2008. [46] C. Y. Chen, H. W. Chang, Y. F. Chang, B. J. Chang, Y. S. Lin, P. S. Jian, H. C. Yeh, H. T. Chien, E. C. Chen, Y. C. Chao, H. F. Meng, H. W. Zan, H. W. Lin, S. F. Horng, Y. J. Cheng, F. W. Yen, I. F. Lin, H. Y. Yang, K. J. Huang, and M. R. Tseng, “Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell,” J. Appl. Phys., vol. 110, no. 9, 2011.
|