王俊翔 (民105)。根據圓錐貫入試驗資料判識土壤層面與分析工址的機率特性 (碩士論文)。國立台灣大學,台北市。吳采容 (民106)。以有限圓錐貫入試驗估計水平方向關聯性長度 (碩士論文)。國立台灣大學,台北市。Abramowitz, M. and Stegun, I. (1970). Handbook of Mathematical Functions. Dover, New York.
Betz, W., Papaioannou, I., and Straub, D. (2016). Transitional Markov chain Monte Carlo: observations and improvements. J. Eng. Mech., 142(5), 04016016.
Bong, T. and Stuedlein, A.W. (2017). Spatial variability of CPT parameters and silty fines in liquefiable beach sands. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 143(12), 04017093.
Bong, T. and Stuedlein, A.W. (2018). Effect of cone penetration conditioning on random field model parameters and impact of spatial variability on liquefaction-induced differential settlements. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 144(5), 04018018.
Ching, J. and Phoon, K.K. (2017). Characterizing uncertain site-specific trend function by sparse Bayesian learning, ASCE Journal of Engineering Mechanics, 143(7), 04017028.
Ching, J. and Phoon, K.K. (2018). Impact of auto-correlation function model on the probability of failure. ASCE Journal of Engineering Mechanics, 145(1), 04018123.
Ching, J. and Wang, J.S. (2017). Discussion: Transitional Markov Chain Monte Carlo: Observations and Improvements, ASCE Journal of Engineering Mechanics, 143(9), 07017001.
Ching, J., Chen, Y.C. (2007). Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection and model averaging. ASCE Journal of Engineering Mechanics, 133(7), 816-832.
Ching, J., Phoon, K.K., and Wu, S.H. (2016b). Impact of statistical uncertainty on geotechnical reliability estimation. Journal of Engineering Mechanics, 142(6), 04016027.
Ching, J., Phoon, K.K., Beck, J.L., and Huang, Y. (2017). On the identification of geotechnical site-specific trend function, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(4), 04017021.
Ching, J., Phoon, K.K., Stuedlein, A.W., and Jaksa, M. (2019). Identification of sample path smoothness in soil spatial variability. Structural Safety, 81, 101870.
Ching, J., Wu, S.H., and Phoon, K.K. (2016a). Statistical characterization of random field parameters using frequentist and Bayesian approaches, Canadian Geotechnical Journal, 53(2), 285-298.
Ching, J., Wu, T.J., Stuedlein, A.W., and Bong, T. (2018). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers, 9, 1597-1608.
Dasaka, S.M., and L.M. Zhang. (2012). Spatial variability of in situ weathered soil. Geotechnique, 62(5), 375-384.
DeGroot, D.J. and Baecher, G.B. (1993). Estimating autocovariances of in-situ soil properties. ASCE Journal of Geotechnical Engineering, 119(1), 147-166.
Fenton, G.A. (1999). Estimation for stochastic soil models. Journal of Geotechnical and Geoenvironmental Engineering, 125(6), 470-485.
Firouzianbandpey, S., Griffiths, D.V., Ibsen, L.B., and Anderson, L.V. (2014). Spatial correlation length of normalized cone data in sand: Case study in the north of Denmark. Canadian Geotechnical Journal, 51(8), 844-857.
Gianella, T.N. and Stuedlein, A.W. (2017). Performance of driven displacement pile-improved ground in controlled blasting field tests. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 143(9), 04017047.
Guttorp, P. and Gneiting, T. (2006). Studies in the history of probability and statistics XLIX on the Matérn correlation family. Biometrika, 93(4), 989-995.
Jaksa, M. (1995). The Influence of Spatial Variability on the Geotechnical Design Properties of a Stiff, Overconsolidated Clay. Ph.D. Dissertation, University of Adelaide, Australia.
Jaksa, M.B., Kaggwa, W.S., and Brooker, P.I. (1999). Experimental evaluation of the scale of fluctuation of a stiff clay. Proceedings of the 8th International Conference on Application of Statistics and Probability, A.A. Balkema, Rotterdam, 415-422.
Ji, S., Xue, Y., and Carin, L. (2008). Bayesian compressive sensing. IEEE Transactions on Signal Processing, 56(6), 2346-2356.
Journel, A.G. and Froidevaux, R. (1982). Anisotropic hole-effect modeling. Mathematical Geology, 14(3), 217-239.
Liu, W.F. and Leung, Y.F. (2018). Spatial variability of saprolitic soil properties and relationship with joint set orientation of parent rock: Insights from cases in Hong Kong. Engineering Geology, 246, 36-44.
Liu, W.F., Leung, Y.F., and Lo, M.K. (2017). Integrated framework for characterization of spatial variability of geological profiles. Canadian Geotechnical Journal, 54(1), 47-58.
Ma, Y.Z. and Jones, T.A. (2001). Teacher’s aid: Modeling hole-effect variograms of lithology-indicator variables. Mathematical Geology, 33(5), 631-648.
Micchelli, C.A. (1986). Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 2, 11-22.
Montoya-Noguera, S., Zhao, T., Hu, Y., Wang, Y., and Phoon, K.K. (2019). Simulation of non-stationary non-Gaussian random fields from sparse measurements using Bayesian compressive sampling and Karhunen-Loève expansion. Structural Safety, 79, 66-79.
Phoon, K.K., Quek, S.T., and An, P. (2003). Identification of statistically homogeneous soil layers using modified Bartlett statistics. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 129(7), 649-659.
Powell, M.J.D. (1987). Radial basis functions for multivariable interpolation: A review. In Algorithms for Approximation (Eds. Mason, J.C. and Cox, M.G.), Carendon Press, Oxford, 143-167.
Qi, X.H. and Liu, H.X. (2019). Estimation of autocorrelation distances for in-situ geotechnical properties using limited data. Structural Safety, 79, 26-38.
Stein, M.L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.
Stuedlein, A.W., Gianella, T.N., and Canivan, G.J. (2016). Densification of granular soils using conventional and drained timber displacement piles. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 142(12), 04016075.
Tian, M., Li, D.Q., Cao, Z.J., Phoon, K.K., and Wang, Y. (2016). Bayesian identification of random field model using indirect test data. Engineering Geology, 210, 197-211.
Tipping, M.E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244.
Uzielli, M., Vannucchi, G., and Phoon, K.K. (2005). Random field characterisation of stress-normalised cone penetration testing parameters. Geotechnique, 55(1), 3-20.
Vanmarcke, E. H. (1977). Probabilistic modeling of soil profiles. ASCE Journal of Geotechnical Engineering, GT11, 1227-1246.
Vanmarcke, E.H. (1983). Random Fields: Analysis and Synthesis. The MIT Press, Cambridge, Massachusetts.
Wang, H., Wang, X., Wellmann, J.F., and Liang, R.Y. (2018). Bayesian stochastic soil modeling framework using Gaussian Markov random fields. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 4(2), 04018014.
Wang, Y. and Zhao, T. (2017). Statistical interpretation of soil property profiles from sparse data using Bayesian compressive sampling. Géotechnique, 67(6), 523-536.
Wang, Y., Zhao, T., and Phoon, K.K. (2018). Direct simulation of random field samples from sparsely measured geotechnical data with consideration of uncertainty in interpretation. Canadian Geotechnical Journal, 55(6), 862-880.
Wang, Y., Zhao, T., Hu, Y, and Phoon, K.K. (2019). Simulation of random fields with trend from sparse measurements without detrending. ASCE Journal of Engineering Mechanics, 145(2), 04018130.
Xiao, T., Li, D.Q., Cao, Z.J., and Zhang, L.M. (2018). CPT-based probabilistic characterization of three-dimensional spatial variability using MLE. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 144(5), 04018023