|
[1]G. Moore, Electronics Magazine 1965. Moore''s law. [2]Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Science 2003, 299, 226-229. Nanoparticle assembly and transport at liquid-liquid interfaces. [3]P. A. Packan, Science 1999, 285, 2079-2081. Pushing the limits. [4]A. Aviram, M. A. Ratner, Chem. Phys. Lett. 1974, 29, 277-283. Molecular rectifiers. [5]K. E. Plass, K. M. Engle, K. A. Cychosz, A. J. Matzger, Nano Lett. 2006, 6, 1178-1183. Large-periodicity two-dimensional crystals by cocrystallization. [6]M. Li, K. Deng, S.-B. Lei, Y.-L. Yang, T.-S. Wang, Y.-T. Shen, C.-R. Wang, Q.-D. Zeng, C. Wang, Angew. Chem. Int. Ed. 2008, 47, 6717-6721. Site-selective fabrication of two-dimensional fullerene arrays by using a supramolecular template at the liquid-solid interface. [7]S. Lei, M. Surin, K. Tahara, J. Adisoejoso, R. Lazzaroni, Y. Tobe, S. D. Feyter, Nano Lett. 2008, 8, 2541-2546. Programmable hierarchical three-component 2D assembly at a liquid−solid interface: Recognition, selection, and transformation. [8]S. R. Forrest, M. E. Thompson, Chem. Rev. 2007, 107, 923-925. Introduction: Organic electronics and optoelectronics. [9]Y. Shirota, H. Kageyama, Chem. Rev. 2007, 107, 953-1010. Charge carrier transporting molecular materials and their applications in devices. [10]K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 2007, 107, 1233-1271. Highly efficient organic devices based on electrically doped transport layers. [11]M. Mas-Torrent, C. Rovira, J. Mater. Chem. 2006, 16, 433-436. Tetrathiafulvalene derivatives for organic field effect transistors. [12]P. Miskiewicz, M. Mas-Torrent, J. Jung, S. Kotarba, I. Glowacki, E. Gomar-Nadal, D. B. Amabilino, J. Veciana, B. Krause, D. Carbone, C. Rovira, J. Ulanski, Chem. Mater. 2006, 18, 4724-4729. Efficient high area ofets by solution based processing of a π-electron rich donor. [13]Y. Yang, C. Wang, Curr. Opin. Colloid Interface Sci. 2009, 14, 135-147. Solvent effects on two-dimensional molecular self-assemblies investigated by using scanning tunneling microscopy. [14]A. Kühnle, Curr. Opin. Colloid Interface Sci. 2009, 14, 157-168. Self-assembly of organic molecules at metal surfaces. [15]S. De Feyter, F. C. De Schryver, J. Phys. Chem. B 2005, 109, 4290-4302. Self-assembly at the liquid/solid interface: Stm reveals. [16]A. Gourdon, Angew. Chem. Int. Ed. 2008, 47, 6950-6953. On-surface covalent coupling in ultrahigh vacuum. [17]X. Bouju, C. Mattioli, G. Franc, A. Pujol, A. Gourdon, Chem. Rev. 2017, 117, 1407-1444. Bicomponent supramolecular architectures at the vacuum–solid interface. [18]J. A. W. Munninghoff, J. A. A. W. Elemans, Chem. Commun. 2017, 53, 1769-1788. Chemistry at the square nanometer: Reactivity at liquid/solid interfaces revealed with an STM. [19]K. S. Mali, N. Pearce, S. De Feyter, N. R. Champness, Chem. Soc. Rev. 2017, 46, 2520-2542. Frontiers of supramolecular chemistry at solid surfaces. [20]M. Nakaya, M. Aono, T. Nakayama, ACS Nano 2011, 5, 7830-7837. Molecular-scale size tuning of covalently bound assembly of C60 molecules. [21]T. Kudernac, S. Lei, J. A. A. W. Elemans, S. De Feyter, Chem. Soc. Rev. 2009, 38, 402-421. Two-dimensional supramolecular self-assembly: Nanoporous networks on surfaces. [22]J. Plas, O. Ivasenko, N. Martsinovich, M. Lackinger, S. De Feyter, Chem. Commun. 2016, 52, 68-71. Nanopatterning of a covalent organic framework host-guest system. [23]L. Verstraete, J. Greenwood, B. E. Hirsch, S. De Feyter, ACS Nano 2016. Self-assembly under confinement: Nanocorrals for understanding fundamentals of 2D crystallization. [24]J. A. A. W. Elemans, S. Lei, S. De Feyter, Angew. Chem. Int. Ed. 2009, 48, 7298-7332. Molecular and supramolecular networks on surfaces: From two-dimensional crystal engineering to reactivity. [25]D. Dini, M. J. F. Calvete, M. Hanack, Chem. Rev. 2016, 116, 13043–13233. Nonlinear optical materials for the smart filtering of optical radiation. [26]F. Giacalone, N. Martin, Chem. Rev. 2006, 106, 5136-5190. Fullerene polymers: Synthesis and properties. [27]R. Lindner, A. Kühnle, ChemPhysChem 2015, 16, 1582-1592. On‐surface reactions. [28]Y. Iwasa, T. Arima, R. M. Fleming, T. Siegrist, O. Zhou, R. C. Haddon, L. J. Rothberg, K. B. Lyons, H. L. Carter, A. F. Hebard, R. Tycko, G. Dabbagh, J. J. Krajewski, G. A. Thomas, T. Yagi, Science 1994, 264, 1570-1572. New phases of C60 synthesized at high pressure. [29]R. Lindner, P. Rahe, M. Kittelmann, A. Gourdon, R. Bechstein, A. Kühnle, Angew. Chem. Int. Ed. 2014, 53, 7952-7955. Substrate templating guides the photoinduced reaction of C60 on calcite. [30]A. Rao, P. Zhou, K.-A. Wang, G. Hager, J. Holden, Y. Wang, W.-T. Lee, X.-X. Bi, P. Ecklund, D. Cornett, Science 1993, 259, 955-957. Photoinduced polymerization of solid C60 films. [31]K. Ohkubo, R. Iwata, T. Yanagimoto, S. Fukuzumi, Chem. Commun. 2007, 3139-3141. Enhanced photoinduced oligomerization of fullerene via radical coupling between fullerene radical cation and radical anion using 9-mesityl-10-methylacridinium ion. [32]P. Veerender, S. P. Koiry, P. Jha, V. Saxena, A. K. Chauhan, S. Bhattacharya, R. Tewari, D. K. Aswal, S. K. Gupta, J. Electrochem. Soc. 2011, 159, D13-D18. An electrochemical approach for deposition of polyfullerene films on ito substrates. [33]M. Nakaya, Y. Kuwahara, M. Aono, T. Nakayama, Small 2008, 4, 538-541. Reversibility‐controlled single molecular level chemical reaction in a C60 monolayer via ionization induced by scanning transmission microscopy. [34]M. Nakaya, S. Tsukamoto, Y. Kuwahara, M. Aono, T. Nakayama, Adv. Mater. 2010, 22, 1622-1625. Molecular scale control of unbound and bound C60 for topochemical ultradense data storage in an ultrathin C60 film. [35]H. L. Zhang, W. Chen, H. Huang, L. Chen, A. T. S. Wee, J. Am. Chem. Soc. 2008, 130, 2720-2721. Preferential trapping of C60 in nanomesh voids. [36]S. Stepanow, M. Lingenfelder, A. Dmitriev, H. Spillmann, E. Delvigne, N. Lin, X. Deng, C. Cai, J. V. Barth, K. Kern, Nat. Mater. 2004, 3, 229-233. Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. [37]Y.-C. Yang, C.-H. Chang, Y.-L. Lee, Chem. Mater. 2007, 19, 6126-6130. Complexation of fullerenes on a pentacene-modified Au(111) surface. [38]M. O. Blunt, J. C. Russell, C. Gimenez-LopezMaria del, N. Taleb, X. Lin, M. Schröder, N. R. Champness, P. H. Beton, Nat. Chem. 2011, 3, 74-78. Guest-induced growth of a surface-based supramolecular bilayer. [39]D. den Boer, G. D. Han, T. M. Swager, Langmuir 2014, 30, 762-767. Templating fullerenes by domain boundaries of a nanoporous network. [40]S. J. H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, W. M. Heckl, J. Phys. Chem. B 2004, 108, 11556-11560. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid−solid interface: Playing nanosoccer. [41]N. Thi Ngoc Ha, T. G. Gopakumar, M. Hietschold, J. Phys. Chem. C 2011, 115, 21743-21749. Polymorphism driven by concentration at the solid–liquid interface. [42]C.-P. Huang, W.-S. Su, C.-C. Su, M.-S. Ho, RSC Adv. 2013, 3, 9234-9239. Characteristics of Si(111) surface with embedded C84 molecules. [43]C.-P. Huang, C.-C. Su, W.-S. Su, C.-F. Hsu, M.-S. Ho, Appl. Phys. Lett. 2010, 97, 061908. Nanomeasurements of electronic and mechanical properties of fullerene embedded Si(111) surfaces. [44]P. Mishra, J. P. Hill, S. Vijayaraghavan, W. V. Rossom, S. Yoshizawa, M. Grisolia, J. Echeverria, T. Ono, K. Ariga, T. Nakayama, C. Joachim, T. Uchihashi, Nano Lett. 2015, 15, 4793-4798. Current-driven supramolecular motor with in situ surface chiral directionality switching. [45]D. V. Potapenko, Z. Li, R. M. Osgood, J. Phys. Chem. C 2012, 116, 4679-4685. Dissociation of single 2-chloroanthracene molecules by stm-tip electron injection. [46]P. C. Eklund, A. M. Rao, Others, 2000. Fullerene polymers and fullerene polymer composites. [47]S. Margadonna, C. M. Brown, T. J. S. Dennis, A. Lappas, P. Pattison, K. Prassides, H. Shinohara, Chem. Mater. 1998, 10, 1742-1744. Crystal structure of the higher fullerene C84. [48]J. A. Theobald, N. S. Oxtoby, N. R. Champness, P. H. Beton, T. J. S. Dennis, Langmuir 2005, 21, 2038-2041. Growth induced reordering of fullerene clusters trapped in a two-dimensional supramolecular network. [49]H. Shinohara, N. Hayashi, H. Sato, Y. Saito, X. D. Wang, T. Hashizume, T. Sakurai, J. Phys. Chem. 1993, 97, 13438-13440. Direct stm imaging of spherical endohedral discandium fullerenes (Sc2@C84). [50]K. Amsharov, N. Abdurakhmanova, S. Stepanow, S. Rauschenbach, M. Jansen, K. Kern, Angew. Chem. Int. Ed. 2010, 122, 9582-9586. Towards the isomer-specific synthesis of higher fullerenes and buckybowls by the surface-catalyzed cyclodehydrogenation of aromatic precursors. [51]D. L. Dorset, J. R. Fryer, J. Phys. Chem. B 2001, 105, 2356-2359. Quantitative electron crystallographic determinations of higher fullerenes in the hexagonal close packed polymorph. [52]G. B. Adams, M. O''Keeffe, R. S. Ruoff, J. Phys. Chem. 1994, 98, 9465-9469. Van der waals surface areas and volumes of fullerenes. [53]L. Xu, X. Zhou, Y. Yu, W. Q. Tian, J. Ma, S. Lei, ACS Nano 2013, 7, 8066-8073. Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling. [54]R. Tanoue, R. Higuchi, N. Enoki, Y. Miyasato, S. Uemura, N. Kimizuka, A. Z. Stieg, J. K. Gimzewski, M. Kunitake, ACS Nano 2011, 5, 3923-3929. Thermodynamically controlled self-assembly of covalent nanoarchitectures in aqueous solution. [55]J. F. Dienstmaier, D. D. Medina, M. Dogru, P. Knochel, T. Bein, W. M. Heckl, M. Lackinger, ACS Nano 2012, 6, 7234-7242. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. [56]S.-L. Lee, C.-Y. J. Chi, M.-J. Huang, C.-h. Chen, C.-W. Li, K. Pati, R.-S. Liu, J. Am. Chem. Soc. 2008, 130, 10454-10455. Shear-induced long-range uniaxial assembly of polyaromatic monolayers at molecular resolution. [57]S.-L. Lee, Z. Yuan, L. Chen, K. S. Mali, K. Müllen, S. De Feyter, J. Am. Chem. Soc. 2014, 136, 7595-7598. Flow-assisted 2D polymorph selection: Stabilizing metastable monolayers at the liquid–solid interface. [58]S.-L. Lee, Z. Yuan, L. Chen, K. S. Mali, K. Müllen, S. De Feyter, J. Am. Chem. Soc. 2014, 136, 4117-4120. Forced to align: Flow-induced long-range alignment of hierarchical molecular assemblies from 2D to 3D. [59]L.-J. Wan, Acc. Chem. Res. 2006, 39, 334-342. Fabricating and controlling molecular self-organization at solid surfaces: Studies by scanning tunneling microscopy. [60]G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1982, 49, 57-61. Surface studies by scanning tunneling microscopy. [61]G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 1983, 50, 120-123. 7 x 7 reconstruction on Si(111) resolved in real space. [62]C. J. Chen, Introduction to Scanning Tunneling Microscopy: Second Edition 2008. [63]http://www.chemistry.uoguelph.ca/educmat/chm729/stmpage/stmdet.htm. [64]https://en.wikipedia.org/wiki/Scanning_tunneling_microscope#/media/File:ScanningTunnelingMicroscope_schematic.png. [65]P. K. Hansma, J. Tersoff, J. Appl. Phys. 1987, 61, R1-R24. Scanning tunneling microscopy. [66]J. Bardeen, Phys. Rev. Lett. 1961, 6, 57-59. Tunnelling from a many-particle point of view. [67]S. R. System, 2015. Model sr865 dsp lock-in amplifier. [68]D. Kang, J. B. Nah, M. Cho, S. Xiao, IEEE Trans. Plasma Sci. 2014, 42, 3231-3238. Shock wave generation in water for biological studies. [69]T. Furusato, M. Ota, T. Fujishima, T. Yamashita, T. Sakugawa, S. Katsuki, H. Akiyama, IEEE Trans. Plasma Sci. 2016, 44, 3189-3195. Effect of voltage rise rate on streamer branching and shock wave characteristics in supercritical carbon dioxide. [70]U. G. E. Perera, F. Ample, H. Kersell, Y. Zhang, G. Vives, J. Echeverria, M. Grisolia, G. Rapenne, C. Joachim, S. W. Hla, Nat. Nanotechnol. 2012, 8, 46. Controlled clockwise and anticlockwise rotational switching of a molecular motor. [71]W. Henderson, J. S. McIndoe, Fuller. Nanotub. Car. N. 2014, 22, 663-669. Mass spectrometric transmutation of fullerenes. [72]H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162-163. C60: Buckminsterfullerene. [73]R. J. Cross, M. Saunders, J. Am. Chem. Soc. 2005, 127, 3044-3047. Transmutation of fullerenes. [74]R. L. Murry, D. L. Strout, G. K. Odom, G. E. Scuseria, Nature 1993, 366, 665-667. Role of sp3 carbon and 7-membered rings in fullerene annealing and fragmentation. [75]J. Zhang, F. L. Bowles, D. W. Bearden, W. K. Ray, T. Fuhrer, Y. Ye, C. Dixon, K. Harich, R. F. Helm, M. M. Olmstead, A. L. Balch, H. C. Dorn, Nat. Chem. 2013, 5, 880-885. A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. [76]H. Sakaguchi, H. Matsumura, H. Gong, A. M. Abouelwafa, Science 2005, 310, 1002-1006. Direct visualization of the formation of single-molecule conjugated copolymers. [77]S.-L. Lee, M.-J. Huang, C.-h. Chen, C.-I. Wang, R.-S. Liu, Chem. Asian J. 2011, 6, 1181-1187. Diode-like i–v characteristics of a nonplanar polyaromatic compound: A spectroscopic study of isolated and stacked dibenzo[g,p]chrysene. [78]G. Sun, M. Kertesz, J. Phys. Chem. A 2001, 105, 5212-5220. Isomer identification for fullerene c84 by 13C NMR spectrum: A density-functional theory study. [79]T. Isabel Fernández, J. F. Katharina, P. Jose Ignacio, J. Phys.: Condens. Matter 2008, 20, 184001. Spectroscopy of C60 single molecules: The role of screening on energy level alignment. [80]S. Tsukamoto, T. Nakayama, M. Aono, Carbon 2007, 45, 1261-1266. Stable molecular orientations of a C60 dimer in a photoinduced dimer row. [81]H. S. Cho, S. K. Kim, D. Kim, K. Fujiwara, K. Komatsu, J. Phys. Chem. A 2000, 104, 9666-9669. Ultrafast energy relaxation dynamics of C120, a [2+2]-bridged C60 dimer. [82]S. Lebedkin, W. E. Hull, A. Soldatov, B. Renker, M. M. Kappes, J. Phys. Chem. B 2000, 104, 4101-4110. Structure and properties of the fullerene dimer c140 produced by pressure treatment of C70. [83]T. Wöhrle, I. Wurzbach, J. Kirres, A. Kostidou, N. Kapernaum, J. Litterscheidt, J. C. Haenle, P. Staffeld, A. Baro, F. Giesselmann, S. Laschat, Chem. Rev. 2016, 116, 1139-1241. Discotic liquid crystals. [84]G. R. Dholakia, M. Meyyappan, A. Facchetti, T. J. Marks, Nano Lett. 2006, 6, 2447-2455. Monolayer to multilayer nanostructural growth transition in n-type oligothiophenes on Au(111) and implications for organic field-effect transistor performance. [85]S.-L. Lee, H.-J. Wu, Y.-J. Hsu, H.-H. Chen, H.-F. Hsu, C.-h. Chen, Chem. Commun. 2014, 50, 14093-14096. Biaxial aromatics with face-on/edge-on stacking adaptability: An stm/sts study of 1D nanowires assembled via rotatable ethynyls. [86]S. Chakrabarti, S. Dey, A. J. Pal, Appl. Phys. Lett. 2011, 99, 053308. Orientation of organic molecules in a monolayer vis-à-vis their molecular orbitals and transport gap. [87]M.-C. Yeh, Y.-L. Su, M.-C. Tzeng, C. W. Ong, T. Kajitani, H. Enozawa, M. Takata, Y. Koizumi, A. Saeki, S. Seki, T. Fukushima, Angew. Chem. Int. Ed. 2013, 52, 1031-1034. Amphiphilic design of a discotic liquid-crystalline molecule for dipole manipulation: Hierarchical columnar assemblies with a 2D superlattice structure. [88]K. Tahara, S. Lei, J. Adisoejoso, S. De Feyter, Y. Tobe, Chem. Commun. 2010, 46, 8507-8525. Supramolecular surface-confined architectures created by self-assembly of triangular phenylene-ethynylene macrocycles via van der waals interaction. [89]Q.-N. Zheng, X.-H. Liu, T. Chen, H.-J. Yan, T. Cook, D. Wang, P. J. Stang, L.-J. Wan, J. Am. Chem. Soc. 2015, 137, 6128-6131. Formation of halogen bond-based 2D supramolecular assemblies by electric manipulation. [90]X.-Y. Wang, W. Jiang, T. Chen, H.-J. Yan, Z.-H. Wang, L.-J. Wan, D. Wang, Chem. Commun. 2013, 49, 1829-1831. Molecular evidence for the intermolecular S•••S interaction in the surface molecular packing motifs of a fused thiophene derivative.
|