|
1 Aravindan, V., Gnanaraj, J., Lee, Y. S. & Madhavi, S. Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews 114, 11619-11635, doi:10.1021/cr5000915 (2014). 2 Liang, J. Y., Wang, C. C. & Lu, S. Y. Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. Journal of Materials Chemistry A 3, 24453-24462, doi:10.1039/c5ta08007j (2015). 3 Bandaru, P. R., Yamada, H., Narayanan, R. & Hoefer, M. Charge transfer and storage in nanostructures. Materials Science & Engineering R-Reports 96, 1-69, doi:10.1016/j.mser.2015.06.001 (2015). 4 Weng, Z., Li, F., Wang, D. W., Wen, L. & Cheng, H. M. Controlled Electrochemical Charge Injection to Maximize the Energy Density of Supercapacitors. Angewandte Chemie-International Edition 52, 3722-3725, doi:10.1002/anie.201209259 (2013). 5 Naoi, K. Evolution of Energy Storage on the Platform of Supercapacitors. Electrochemistry 81, 775-776, doi:10.5796/electrochemistry.81.775 (2013). 6 Du Pasquier, A. et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries. Journal of the Electrochemical Society 145, 472-477 (1998). 7 Song, H. W., Yang, G. Z. & Wang, C. X. General Scalable Strategy toward Heterogeneously Doped Hierarchical Porous Graphitic Carbon Bubbles for Lithium-Ion Battery Anodes. Acs Applied Materials & Interfaces 6, 21661-21668, doi:10.1021/am506747z (2014). 8 Zheng, F. C., Yang, Y. & Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications 5, doi:10.1038/ncomms6261 (2014). 9 Lyu, Z. Y. et al. Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Research 8, 3535-3543, doi:10.1007/s12274-015-0853-4 (2015). 10 Liu, F., Song, S., Xue, D. & Zhang, H. Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Research Letters 7, 149, doi:10.1186/1556-276x-7-149 (2012). 11 Deng, D. Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering 3, 385-418, doi:10.1002/ese3.95 (2015). 12 Li, X. & Wei, B. Q. Supercapacitors based on nanostructured carbon. Nano Energy 2, 159-173, doi:10.1016/j.nanoen.2012.09.008 (2013). 13 Puthusseri, D. et al. From Waste Paper Basket to Solid State and Li-HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small 10, 4395-4402, doi:10.1002/smll.201401041 (2014). 14 Puthusseri, D., Aravindan, V., Madhavi, S. & Ogale, S. Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta 130, 766-770, doi:10.1016/j.electacta.2014.03.079 (2014). 15 Ding, J. et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941-955, doi:10.1039/c4ee02986k (2015). 16 Kiamahalleh, M. V., Zein, S. H. S., Najafpour, G., Abd Sata, S. & Buniran, S. MULTIW ALLED CARBON NANOTUBES BASED NANOCOMPOSITES FOR SUPERCAPACITORS: A REVIEW OF ELECTRODE MATERIALS. Nano 7, doi:10.1142/s1793292012300022 (2012). 17 Wang, H. L. et al. Hybrid Device Employing Three-Dimensional Arrays of MnO in Carbon Nanosheets Bridges Battery-Supercapacitor Divide. Nano Letters 14, 1987-1994, doi:10.1021/nl500011d (2014). 18 Yi, R., Dai, F., Gordin, M. L., Chen, S. R. & Wang, D. H. Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials 3, 295-300, doi:10.1002/aenm.201200857 (2013). 19 Zhang, J., Wu, H. Z., Wang, J., Shi, J. L. & Shi, Z. Q. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochimica Acta 182, 156-164, doi:10.1016/j.electacta.2015.09.074 (2015). 20 MacFarlane, D. R. et al. Energy applications of ionic liquids. Energy Environ. Sci. 7, 232-250, doi:10.1039/c3ee42099j (2014). 21 Ma, Y. F., Chang, H. C., Zhang, M. & Chen, Y. S. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors. Advanced Materials 27, 5296-5308, doi:10.1002/adma.201501622 (2015). 22 Leng, K. et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research 6, 581-592, doi:10.1007/s12274-013-0334-6 (2013). 23 Yi, R., Zai, J. T., Dai, F., Gordin, M. L. & Wang, D. H. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 6, 211-218, doi:10.1016/j.nanoen.2014.04.006 (2014). 24 Naoi, K., Ishimoto, S., Miyamoto, J. & Naoi, W. Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363-9373, doi:10.1039/c2ee21675b (2012). 25 Li, B. et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102-106, doi:10.1039/c5ee03149d (2016). 26 Zhang, F. et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 6, 1623-1632, doi:10.1039/c3ee40509e (2013). 27 Wang, H. W., Guan, C., Wang, X. F. & Fan, H. J. A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode. Small 11, 1470-1477, doi:10.1002/smll.201402620 (2015). 28 Que, L. F., Wang, Z. B., Yu, F. D. & Gu, D. M. 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors. Journal of Materials Chemistry A 4, 8716-8723, doi:10.1039/c6ta02413k (2016). 29 Wang, H. W. et al. A High-Energy Lithium-Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridine-Derived Porous Nitrogen-Doped Carbon Cathode. Advanced Functional Materials 26, 3082-3093, doi:10.1002/adfm.201505240 (2016). 30 Zhang, T. F. et al. High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon 92, 106-118, doi:10.1016/j.carbon.2015.03.032 (2015). 31 Wang, R. T., Lang, J. W., Zhang, P., Lin, Z. Y. & Yan, X. B. Fast and Large Lithium Storage in 3D Porous VN Nanowires-Graphene Composite as a Superior Anode Toward High-Performance Hybrid Supercapacitors. Advanced Functional Materials 25, 2270-2278, doi:10.1002/adfm.201404472 (2015). 32 Liu, C. F. et al. Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22, 290-300, doi:10.1016/j.nanoen.2016.02.035 (2016). 33 Li, B. et al. Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. Journal of Materials Chemistry A 5, 24502-24507, doi:10.1039/c7ta07088h (2017). 34 Liu, C. F., Zhang, C. K., Fu, H. Y., Nan, X. H. & Cao, G. Z. Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors. Advanced Energy Materials 7, doi:10.1002/aenm.201601127 (2017). 35 Yu, X. L. et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochimica Acta 228, 76-81, doi:10.1016/j.electacta.2017.01.058 (2017). 36 Jiang, J. M. et al. Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A 5, 23283-23291, doi:10.1039/c7ta05972h (2017). 37 Ajuria, J. et al. Graphene-based lithium ion capacitor with high gravimetric energy and power densities. Journal of Power Sources 363, 422-427, doi:10.1016/j.jpowsour.2017.07.096 (2017). 38 Lee, W. S. V., Huang, X. L., Tan, T. L. & Xue, J. M. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor. Acs Applied Materials & Interfaces 10, 1690-1700, doi:10.1021/acsami.7b15473 (2018). 39 Jayaraman, S., Madhavi, S. & Aravindan, V. High energy Li-ion capacitor and battery using graphitic carbon spheres as an insertion host from cooking oil. Journal of Materials Chemistry A 6, 3242-3248, doi:10.1039/c7ta09905c (2018). 40 Huang, Y. et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518-525, doi:10.1016/j.nanoen.2014.10.031 (2015). 41 Cao, J., Huang, T., Liu, R. L., Xi, X. & Wu, D. Q. Nitrogen-Doped Carbon Coated Stainless Steel Meshes for Flexible Supercapacitors. Electrochimica Acta 230, 265-270, doi:10.1016/j.electacta.2017.02.001 (2017). 42 Stober, W., Fink, A. & Bohn, E. CONTROLLED GROWTH OF MONODISPERSE SILICA SPHERES IN MICRON SIZE RANGE. Journal of Colloid and Interface Science 26, 62-&, doi:10.1016/0021-9797(68)90272-5 (1968). 43 Teng, Z. G. et al. Mesoporous Silica Hollow Spheres with Ordered Radial Mesochannels by a Spontaneous Self-Transformation Approach. Chemistry of Materials 25, 98-105, doi:10.1021/cm303338v (2013). 44 Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 101, 12096-12101, doi:10.1073/pnas.0404778101 (2004). 45 Yokoi, T. et al. Periodic arrangement of silica nanospheres assisted by amino acids. Journal of the American Chemical Society 128, 13664-13665, doi:10.1021/ja065071y (2006). 46 Carcouet, C. et al. Nucleation and Growth of Monodisperse Silica Nanoparticles. Nano Letters 14, 1433-1438, doi:10.1021/nl404550d (2014). 47 Huo, K. F. et al. Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. Journal of Power Sources 324, 233-238, doi:10.1016/j.jpowsour.2016.05.084 (2016). 48 Yang, Y. F. et al. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. Acs Applied Materials & Interfaces 9, 14180-14186, doi:10.1021/acsami.6b14840 (2017). 49 Gaddam, R. R. et al. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346-352, doi:10.1016/j.nanoen.2016.05.047 (2016). 50 Zhu, S. et al. Three-Dimensional Network of N-Doped Carbon Ultrathin Nanosheets with Closely Packed Mesopores: Controllable Synthesis and Application in Electrochemical Energy Storage. Acs Applied Materials & Interfaces 8, 11720-11728, doi:10.1021/acsami.6b02386 (2016). 51 Zhu, S. et al. Synthesis of 2D/3D carbon hybrids by heterogeneous space-confined effect for electrochemical energy storage. Journal of Materials Chemistry A 5, 19175-19183, doi:10.1039/c7ta05710e (2017). 52 Huang, S. F. et al. N-Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. Advanced Functional Materials 28, doi:10.1002/adfm.201706294 (2018). 53 Zhang, K. et al. Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres with Tunable Pore Structure. Journal of the American Chemical Society 135, 2427-2430, doi:10.1021/ja3116873 (2013). 54 Yamamoto, E. & Kuroda, K. Colloidal Mesoporous Silica Nanoparticles. Bulletin of the Chemical Society of Japan 89, 501-539, doi:10.1246/bcsj.20150420 (2016). 55 Hsiao, S. Y., Wong, D. S. H. & Lu, S. Y. Evaporation-assisted formation of three-dimensional photonic crystals. Journal of the American Ceramic Society 88, 974-976, doi:10.1111/j.1551-2916.2005.00153.x (2005). 56 Zhang, L. Y. et al. Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties. Journal of Colloid and Interface Science 493, 327-333, doi:10.1016/j.jcis.2017.01.046 (2017). 57 Wang, L. et al. Bio-inspired polydopamine-coated clay and its thermo-oxidative stabilization mechanism for styrene butadiene rubber. Rsc Advances 5, 9314-9324, doi:10.1039/c4ra11904e (2015). 58 M. Shalaby, H., A. Begley, J. & Macdonald, D. Fatigue Crack Initiation In 403 Stainless Steel In Simulated Steam Cycle Environments: Hydroxide And Silicate Solutions. Vol. 29 (1994). 59 Ghimbeu, C. M. et al. Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries. Journal of the Electrochemical Society 160, A1907-A1915, doi:10.1149/2.101310jes (2013). 60 Naushad, M., Ahamad, T., Al-Maswari, B. M., Alqadami, A. A. & Alshehri, S. M. Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chemical Engineering Journal 330, 1351-1360, doi:10.1016/j.cej.2017.08.079 (2017). 61 Jackson, S. T. & Nuzzo, R. G. DETERMINING HYBRIDIZATION DIFFERENCES FOR AMORPHOUS-CARBON FROM THE XPS C-1S ENVELOPE. Appl. Surf. Sci. 90, 195-203, doi:10.1016/0169-4332(95)00079-8 (1995). 62 Hawari, A. I., Al-Qasir, II & Ougouag, A. M. Investigation of the impact of simple carbon interstitial formations on thermal neutron scattering in graphite. Nuclear Science and Engineering 155, 449-462, doi:10.13182/nse07-a2676 (2007). 63 Zhang, K. L. et al. Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochimica Acta 155, 174-182, doi:10.1016/j.electacta.2014.12.108 (2015). 64 Naoi, K. 'Nanohybrid Capacitor': The Next Generation Electrochemical Capacitors. Fuel Cells 10, 825-833, doi:10.1002/fuce.201000041 (2010).
|