跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 06:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭恆亦
研究生(外文):Cheng, Heng-Yi
論文名稱:新穎階層式多孔碳奈米結構複合之網狀集電板於鋰離子電容器與鋰離子電池上之應用
論文名稱(外文):Applications of Novel Hierarchical Porous Carbon Nanostructures Composited Mesh Type Current Collectors on Li-ion Capacitors and Li-ion Batteries
指導教授:呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員:蔡德豪林義峯
口試委員(外文):Tsai, De-HaoLin, Yi-Feng
口試日期:2018-07-20
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:108
中文關鍵詞:鋰離子鋰離子電池鋰離子電容器超級電容器網狀電極能源環境自組裝多巴胺
外文關鍵詞:Li-ionBatterySupercapacitorHybridMeshEnergySelf-assembleDopamineEnvironment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
科技日新月異,人們對於儲能的要求將日趨嚴格。隨著電動車的普及,電池除了需降低其成本,更要同時提升功率密度及能量密度。
鋰離子電池為主要的儲能裝置,但其能量與功率密度仍有很大的改善空間。鋰離子電容器為新型之儲電裝置,相較於超級電容器提升了能量密度的表現以外,並具維持良好的功率密度、可快速充放電及循環穩定性佳等優點,且其能量密度逼近鋰離子電池,但製程相對繁複、價格高昂。因此本研究將針對如何以提升鋰離子電池與電容器的表現,研發製程簡單的雙功能材料作為研究方向。
網狀電極提供了更多的空間予活性物質乘載,其也無須經過繁複的電池塗佈過程。除此之外其三維的電子傳輸路徑也能降低其過電位,以此提升功率密度及電容維持率。故本研究將以二氧化矽奈米球為硬膜板,以聚多巴胺為摻氮碳源,用簡單的方法將其包覆於網狀電極中,形成一連續且具有階層式孔洞的活性碳電極。此碳結構不須經由化學活化即擁有1229.4 m2 g-1的高比表面積及2.21 cm2 g-1的高孔隙率,且仍維持良好的石墨化程度與氮摻雜特性(3.38%)。此相同的製程,可同時為鋰離子電池與鋰離子電容使用,極具工業應用的可行性。
此新穎的碳結構可同時作為鋰離子電池的陽極,以及鋰離子電容的陰極。在鋰離子電池及鋰離子電容的陽極系統中,於0.2 A g-1的電流密度下有2058 mAh g-1的超高比電容值表現,較石墨的理論電容值(372 mAh g-1)有553.2%的提升。在鋰離子電容的系統中,於高電壓的(2.0-4.2V vs. Li/Li+)範圍內,同樣具有良好的電容特性。在0.1 A g-1的電流密度下有125.2 mAh g-1(204.9 F g-1)的比電容值表現,將電流密度提升至10.0 A g-1,仍有56.6 mAh g-1(92.6 F g-1)的電容值維持。於長效性表現中,在10 A g-1的大電流下充放電8000次也仍有89.3%的電容維持率。
將此雙功能碳材應用於鋰離子電容器,在2.0V-4.0V的高操作電壓範圍中,於1.4 kW kg-1的功率密度下其擁有144.8 Wh kg-1的高能量密度,且於27.3 kW kg-1的超高功率密度下也仍有57.5 Wh kg-1的能量密度。且於5000圈的循環測試後仍有84.8%的電容維持率。
With ever advancing technology, demands for energy storage have become very crucial. As the electric energy driven cars have become more and more popular, efforts should be put on reducing the cost of energy storage devices, as well as boosting their power densities and energy densities.
Li-ion batteries are still considered a primary energy storage device nowadays. They however suffer from low power densities and low cycle life, which restrict their practical applications. Li-ion capacitors, on the other hand, combine the merits of the Li-ion battery and supercapacitors, from which they can deliver high energy densities in much higher discharge rates as compared to Li-ion batteries. Nevertheless, because of difficulties in manufacturing processes, there are still problems in putting Li-ion capacitors into mass production. The focus of this thesis is to improve the performances of Li-ion batteries, and to develop bifunctional electrodes to be applied in both Li-ion batteries and Li-ion capacitors as the anode or to be applied as both the anode and cathode for Li-ion capacitors.
Mesh current collectors provide more space for active material loading. On the other hand, in mesh current collectors, their 3-D electron transport path can abate the resistance overpotential and increase the power density and capacity retention. In this thesis, N-doped hierarchical porous carbon structure was derived from polydopamine coated nano mesoporous silica spheres, which were self-assembled on the mesh current collector. Without any extra activation process, the continuous porous carbon structure acquired an ultra high specific surface area of 1229 m2 g-1 and a large specific pore volume of 2.21 cm2 g-1. Furthermore, the novel carbon structure also possesses a high graphitization degree and high level of N-doping (3.38%), and performs well as the anode of Li-ion capacitors and Li-ion batteries.
In the Li-ion battery, the novel carbon structures shows an ultra high specific capacity of 2058 mAh g-1 at a current density of 0.2 A g-1, which is 553% of the theoretical capacity of natural graphite (372 mAh g-1). It also shows good rate capability and cycling stability. In the high potential window of 2.0-4.2 V vs. Li/Li+, it also shows an outstanding specific capacity of 125.2 mAh g-1 (204.9 F g-1) at the current density of 0.1 A g-1.
The Li-ion capacitor assembled delivers a high energy density of 144.8 Wh kg-1 at 1.4 kW Kg-1 and a high power density of 27.3 kW kg-1 at 57.5 Wh kg-1, as well as reasonable cycling stability (84.8% retention after 5000 cycles) within the voltage range of 2.0-4.0 V.
摘要 I
誌謝 V
圖目錄 VIII
表目錄 XII
第1章 緒論 1
1-1 前言 1
1-2 電化學原理 2
1-2-1 電化學反應系統 2
1-2-2 影響電化學反應系統的因素 4
1-2-3 電極材料 4
1-3 二次儲能元件 5
1-3-1 概述 5
1-3-2 鋰離子電池簡介 6
1-3-3 超級電容器簡介 9
1-3-4 鋰離子電容器簡介 11
第2章 文獻回顧 14
2-1 概述 14
2-2 鋰離子電容器 16
2-2-1 鈦酸鋰 16
2-2-2 過渡金屬氧化物 18
2-2-3 矽材 19
2-2-4 生物衍生性碳材 21
2-3 網狀電極 25
2-3-1 碳微米球修飾之金屬網格電極 25
2-3-2 導電高分子與碳修飾之金屬網格電極 29
2-4 氮摻雜碳材 32
2-4-1 介孔多巴胺奈米球 32
2-4-2 ZIF-8衍生之多孔摻氮碳結構 35
第3章 實驗方法與儀器 40
3-1 研究動機 40
3-2 實驗藥品 41
3-3 實驗器材 43
3-4 分析儀器 45
3-5 實驗流程 48
3-5-1 網狀電極之清洗及前處理 48
3-5-2 製備二氧化矽奈米球 48
3-5-3 二氧化矽奈米球之自組裝 49
3-5-4 以多巴胺包覆碳層於集電板 50
3-5-5 極片及半電池製備 50
3-5-6 鋰電容製備 52
3-5-7 電化學分析實驗 52
第4章 結果與討論 55
4-1 二氧化矽奈米球的影響 55
4-1-1 二氧化矽奈米球之形貌分析比較 55
4-1-2 BET比表面積分析比較 56
4-1-3 熱穩定性分析比較 57
4-2 自組裝情形之分析比較 59
4-2-1 自組裝溶劑之影響 59
4-2-2 二氧化矽奈米球之影響 60
4-2-3 二氧化矽奈米球經聚多巴胺包覆後之影響 61
4-3 聚多巴胺包覆時間對極片之影響 64
4-3-1 形貌分析 64
4-3-2 BET比表面積分析 68
4-3-3 電化學分析 71
4-4 自組裝次數對極片的影響 73
4-5 二氧化矽奈米球對極片之影響 77
4-5-1 形貌分析 77
4-5-2 BET比表面積分析 78
4-5-3 電化學分析 79
4-6 碳化溫度對碳材的影響 82
4-6-1 SEM及EDS分析 82
4-6-2 BET比表面積分析 83
4-6-3 XPS元素分析 85
4-6-4 結構分析(拉曼光譜及XRD) 87
4-6-5 碳層分析(HRTEM) 89
4-6-6 電化學分析 90
4-6-7 最適化參數之長效性測試 93
4-7 鋰離子電容器陰極半電池之應用 96
4-7-1 電化學分析 96
4-8 鋰離子電容器 98
4-8-1 電化學分析 98
第5章 結論 102
參考文獻 103
1 Aravindan, V., Gnanaraj, J., Lee, Y. S. & Madhavi, S. Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews 114, 11619-11635, doi:10.1021/cr5000915 (2014).
2 Liang, J. Y., Wang, C. C. & Lu, S. Y. Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. Journal of Materials Chemistry A 3, 24453-24462, doi:10.1039/c5ta08007j (2015).
3 Bandaru, P. R., Yamada, H., Narayanan, R. & Hoefer, M. Charge transfer and storage in nanostructures. Materials Science & Engineering R-Reports 96, 1-69, doi:10.1016/j.mser.2015.06.001 (2015).
4 Weng, Z., Li, F., Wang, D. W., Wen, L. & Cheng, H. M. Controlled Electrochemical Charge Injection to Maximize the Energy Density of Supercapacitors. Angewandte Chemie-International Edition 52, 3722-3725, doi:10.1002/anie.201209259 (2013).
5 Naoi, K. Evolution of Energy Storage on the Platform of Supercapacitors. Electrochemistry 81, 775-776, doi:10.5796/electrochemistry.81.775 (2013).
6 Du Pasquier, A. et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries. Journal of the Electrochemical Society 145, 472-477 (1998).
7 Song, H. W., Yang, G. Z. & Wang, C. X. General Scalable Strategy toward Heterogeneously Doped Hierarchical Porous Graphitic Carbon Bubbles for Lithium-Ion Battery Anodes. Acs Applied Materials & Interfaces 6, 21661-21668, doi:10.1021/am506747z (2014).
8 Zheng, F. C., Yang, Y. & Chen, Q. W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications 5, doi:10.1038/ncomms6261 (2014).
9 Lyu, Z. Y. et al. Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Research 8, 3535-3543, doi:10.1007/s12274-015-0853-4 (2015).
10 Liu, F., Song, S., Xue, D. & Zhang, H. Selective crystallization with preferred lithium-ion storage capability of inorganic materials. Nanoscale Research Letters 7, 149, doi:10.1186/1556-276x-7-149 (2012).
11 Deng, D. Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering 3, 385-418, doi:10.1002/ese3.95 (2015).
12 Li, X. & Wei, B. Q. Supercapacitors based on nanostructured carbon. Nano Energy 2, 159-173, doi:10.1016/j.nanoen.2012.09.008 (2013).
13 Puthusseri, D. et al. From Waste Paper Basket to Solid State and Li-HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small 10, 4395-4402, doi:10.1002/smll.201401041 (2014).
14 Puthusseri, D., Aravindan, V., Madhavi, S. & Ogale, S. Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta 130, 766-770, doi:10.1016/j.electacta.2014.03.079 (2014).
15 Ding, J. et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941-955, doi:10.1039/c4ee02986k (2015).
16 Kiamahalleh, M. V., Zein, S. H. S., Najafpour, G., Abd Sata, S. & Buniran, S. MULTIW ALLED CARBON NANOTUBES BASED NANOCOMPOSITES FOR SUPERCAPACITORS: A REVIEW OF ELECTRODE MATERIALS. Nano 7, doi:10.1142/s1793292012300022 (2012).
17 Wang, H. L. et al. Hybrid Device Employing Three-Dimensional Arrays of MnO in Carbon Nanosheets Bridges Battery-Supercapacitor Divide. Nano Letters 14, 1987-1994, doi:10.1021/nl500011d (2014).
18 Yi, R., Dai, F., Gordin, M. L., Chen, S. R. & Wang, D. H. Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials 3, 295-300, doi:10.1002/aenm.201200857 (2013).
19 Zhang, J., Wu, H. Z., Wang, J., Shi, J. L. & Shi, Z. Q. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochimica Acta 182, 156-164, doi:10.1016/j.electacta.2015.09.074 (2015).
20 MacFarlane, D. R. et al. Energy applications of ionic liquids. Energy Environ. Sci. 7, 232-250, doi:10.1039/c3ee42099j (2014).
21 Ma, Y. F., Chang, H. C., Zhang, M. & Chen, Y. S. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors. Advanced Materials 27, 5296-5308, doi:10.1002/adma.201501622 (2015).
22 Leng, K. et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research 6, 581-592, doi:10.1007/s12274-013-0334-6 (2013).
23 Yi, R., Zai, J. T., Dai, F., Gordin, M. L. & Wang, D. H. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 6, 211-218, doi:10.1016/j.nanoen.2014.04.006 (2014).
24 Naoi, K., Ishimoto, S., Miyamoto, J. & Naoi, W. Second generation 'nanohybrid supercapacitor': Evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363-9373, doi:10.1039/c2ee21675b (2012).
25 Li, B. et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102-106, doi:10.1039/c5ee03149d (2016).
26 Zhang, F. et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 6, 1623-1632, doi:10.1039/c3ee40509e (2013).
27 Wang, H. W., Guan, C., Wang, X. F. & Fan, H. J. A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode. Small 11, 1470-1477, doi:10.1002/smll.201402620 (2015).
28 Que, L. F., Wang, Z. B., Yu, F. D. & Gu, D. M. 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors. Journal of Materials Chemistry A 4, 8716-8723, doi:10.1039/c6ta02413k (2016).
29 Wang, H. W. et al. A High-Energy Lithium-Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridine-Derived Porous Nitrogen-Doped Carbon Cathode. Advanced Functional Materials 26, 3082-3093, doi:10.1002/adfm.201505240 (2016).
30 Zhang, T. F. et al. High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon 92, 106-118, doi:10.1016/j.carbon.2015.03.032 (2015).
31 Wang, R. T., Lang, J. W., Zhang, P., Lin, Z. Y. & Yan, X. B. Fast and Large Lithium Storage in 3D Porous VN Nanowires-Graphene Composite as a Superior Anode Toward High-Performance Hybrid Supercapacitors. Advanced Functional Materials 25, 2270-2278, doi:10.1002/adfm.201404472 (2015).
32 Liu, C. F. et al. Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 22, 290-300, doi:10.1016/j.nanoen.2016.02.035 (2016).
33 Li, B. et al. Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy. Journal of Materials Chemistry A 5, 24502-24507, doi:10.1039/c7ta07088h (2017).
34 Liu, C. F., Zhang, C. K., Fu, H. Y., Nan, X. H. & Cao, G. Z. Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors. Advanced Energy Materials 7, doi:10.1002/aenm.201601127 (2017).
35 Yu, X. L. et al. A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes. Electrochimica Acta 228, 76-81, doi:10.1016/j.electacta.2017.01.058 (2017).
36 Jiang, J. M. et al. Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A 5, 23283-23291, doi:10.1039/c7ta05972h (2017).
37 Ajuria, J. et al. Graphene-based lithium ion capacitor with high gravimetric energy and power densities. Journal of Power Sources 363, 422-427, doi:10.1016/j.jpowsour.2017.07.096 (2017).
38 Lee, W. S. V., Huang, X. L., Tan, T. L. & Xue, J. M. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor. Acs Applied Materials & Interfaces 10, 1690-1700, doi:10.1021/acsami.7b15473 (2018).
39 Jayaraman, S., Madhavi, S. & Aravindan, V. High energy Li-ion capacitor and battery using graphitic carbon spheres as an insertion host from cooking oil. Journal of Materials Chemistry A 6, 3242-3248, doi:10.1039/c7ta09905c (2018).
40 Huang, Y. et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11, 518-525, doi:10.1016/j.nanoen.2014.10.031 (2015).
41 Cao, J., Huang, T., Liu, R. L., Xi, X. & Wu, D. Q. Nitrogen-Doped Carbon Coated Stainless Steel Meshes for Flexible Supercapacitors. Electrochimica Acta 230, 265-270, doi:10.1016/j.electacta.2017.02.001 (2017).
42 Stober, W., Fink, A. & Bohn, E. CONTROLLED GROWTH OF MONODISPERSE SILICA SPHERES IN MICRON SIZE RANGE. Journal of Colloid and Interface Science 26, 62-&, doi:10.1016/0021-9797(68)90272-5 (1968).
43 Teng, Z. G. et al. Mesoporous Silica Hollow Spheres with Ordered Radial Mesochannels by a Spontaneous Self-Transformation Approach. Chemistry of Materials 25, 98-105, doi:10.1021/cm303338v (2013).
44 Navrotsky, A. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 101, 12096-12101, doi:10.1073/pnas.0404778101 (2004).
45 Yokoi, T. et al. Periodic arrangement of silica nanospheres assisted by amino acids. Journal of the American Chemical Society 128, 13664-13665, doi:10.1021/ja065071y (2006).
46 Carcouet, C. et al. Nucleation and Growth of Monodisperse Silica Nanoparticles. Nano Letters 14, 1433-1438, doi:10.1021/nl404550d (2014).
47 Huo, K. F. et al. Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries. Journal of Power Sources 324, 233-238, doi:10.1016/j.jpowsour.2016.05.084 (2016).
48 Yang, Y. F. et al. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. Acs Applied Materials & Interfaces 9, 14180-14186, doi:10.1021/acsami.6b14840 (2017).
49 Gaddam, R. R. et al. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346-352, doi:10.1016/j.nanoen.2016.05.047 (2016).
50 Zhu, S. et al. Three-Dimensional Network of N-Doped Carbon Ultrathin Nanosheets with Closely Packed Mesopores: Controllable Synthesis and Application in Electrochemical Energy Storage. Acs Applied Materials & Interfaces 8, 11720-11728, doi:10.1021/acsami.6b02386 (2016).
51 Zhu, S. et al. Synthesis of 2D/3D carbon hybrids by heterogeneous space-confined effect for electrochemical energy storage. Journal of Materials Chemistry A 5, 19175-19183, doi:10.1039/c7ta05710e (2017).
52 Huang, S. F. et al. N-Doping and Defective Nanographitic Domain Coupled Hard Carbon Nanoshells for High Performance Lithium/Sodium Storage. Advanced Functional Materials 28, doi:10.1002/adfm.201706294 (2018).
53 Zhang, K. et al. Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres with Tunable Pore Structure. Journal of the American Chemical Society 135, 2427-2430, doi:10.1021/ja3116873 (2013).
54 Yamamoto, E. & Kuroda, K. Colloidal Mesoporous Silica Nanoparticles. Bulletin of the Chemical Society of Japan 89, 501-539, doi:10.1246/bcsj.20150420 (2016).
55 Hsiao, S. Y., Wong, D. S. H. & Lu, S. Y. Evaporation-assisted formation of three-dimensional photonic crystals. Journal of the American Ceramic Society 88, 974-976, doi:10.1111/j.1551-2916.2005.00153.x (2005).
56 Zhang, L. Y. et al. Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties. Journal of Colloid and Interface Science 493, 327-333, doi:10.1016/j.jcis.2017.01.046 (2017).
57 Wang, L. et al. Bio-inspired polydopamine-coated clay and its thermo-oxidative stabilization mechanism for styrene butadiene rubber. Rsc Advances 5, 9314-9324, doi:10.1039/c4ra11904e (2015).
58 M. Shalaby, H., A. Begley, J. & Macdonald, D. Fatigue Crack Initiation In 403 Stainless Steel In Simulated Steam Cycle Environments: Hydroxide And Silicate Solutions. Vol. 29 (1994).
59 Ghimbeu, C. M. et al. Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries. Journal of the Electrochemical Society 160, A1907-A1915, doi:10.1149/2.101310jes (2013).
60 Naushad, M., Ahamad, T., Al-Maswari, B. M., Alqadami, A. A. & Alshehri, S. M. Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chemical Engineering Journal 330, 1351-1360, doi:10.1016/j.cej.2017.08.079 (2017).
61 Jackson, S. T. & Nuzzo, R. G. DETERMINING HYBRIDIZATION DIFFERENCES FOR AMORPHOUS-CARBON FROM THE XPS C-1S ENVELOPE. Appl. Surf. Sci. 90, 195-203, doi:10.1016/0169-4332(95)00079-8 (1995).
62 Hawari, A. I., Al-Qasir, II & Ougouag, A. M. Investigation of the impact of simple carbon interstitial formations on thermal neutron scattering in graphite. Nuclear Science and Engineering 155, 449-462, doi:10.13182/nse07-a2676 (2007).
63 Zhang, K. L. et al. Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochimica Acta 155, 174-182, doi:10.1016/j.electacta.2014.12.108 (2015).
64 Naoi, K. 'Nanohybrid Capacitor': The Next Generation Electrochemical Capacitors. Fuel Cells 10, 825-833, doi:10.1002/fuce.201000041 (2010).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊