跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/02 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林韻庭
研究生(外文):Lin, Yun-Ting
論文名稱:廢氣組成對中溫NH3-SCR觸媒脫硝效能之研究
論文名稱(外文):Effects of flue gas composition on NO removal under mid-temperature via NH3-SCR catalyst
指導教授:白曛綾
指導教授(外文):Bai, Hsunling
口試委員:盧重興楊其偉張宗良
口試委員(外文):Lu, ChungsyingChang, Chung-Liang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:159
中文關鍵詞:選擇性觸媒還原法DeNOSO2毒化CO多污染物處理
外文關鍵詞:selective catalytic reductionDeNOSO2 and moisture poisoningCO
相關次數:
  • 被引用被引用:2
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
選擇性觸媒還原法SCR (Selective catalytic reduction)為廣泛應用處理氮氧化物之技術,而傳統用於脫硝之釩類觸媒因其具毒性且操作溫度較高(較耗能),近年研究多趨向發展中低溫觸媒。因此,本研究將嘗試以Mn20Fe10/TiO2觸媒同步處理模擬之廢氣,以了解廢氣組成對本實驗室所開發觸媒之脫硝效率之影響。
本研究針對脫硝系統模擬之煙道廢氣,探討不同廢氣組成(水氣、CO、SO2)的影響。結果顯示,中溫範圍內無論有無水氣存在,200 ℃之效率較250 ℃略佳,但當系統中同時具水氣和SO2時情況恰好逆轉,以250 ℃為佳。僅有CO和NO存在時(無NH3)雖可提供部分脫硝和CO轉換率,但以觸媒適用性而言效果仍不如NH3-SCR佳,無法完全取代NH3。SO2一直以來都是NH3-SCR脫硝觸媒中的毒化因子,因其反應性佳,易與NH3或觸媒金屬反應成硫酸銨鹽或金屬硫化物,毒化觸媒降低其使用壽命。此外,研究發現水氣與CO的存在對SCR脫硝來說有一體兩面的功用: 雖多了這些物種會競爭反應活性位置而使脫硝性能下降,但長時間下來此抑制也些許減緩了觸媒受SO2的毒化作用,而部分扮演了保護觸媒的角色。
結合上述結果,所製備之Mn20Fe10/TiO2觸媒經模擬廢氣條件測試,可成功應用處理氮氧化物,於空間流速10,000 h-1、反應溫度250 ℃、有15%水氣、8,000 ppm CO與20 ppm低濃度SO2之條件下,可在36 hr長時間下維持90%以上的脫硝效能。
Selective catalytic reduction (SCR) is a commonly used technique for NO reduction. The toxicity and higher operating temperature (higher energy consumption for reheating waste gas to optimal temperature) of traditional vanadium SCR catalyst restrict its application. Therefore, there has been an increasing interest in developing mid-to-low temperature SCR catalysts in recent years. This study attempts to treat simulated waste gas with Mn20Fe10/TiO2 catalyst to explore the influence of different waste gas compositions on NO abatement.
The aim of this study is to investigate the impact of different simulated waste flue gas composition (moisture, CO, SO2) to NO removal efficiency. The result shows that the NO conversion at 200 ℃ is better than at 250 ℃ no matter with/without moisture. In contrast, the NO conversion is better at 250 ℃ when moisture and SO2 exist simultaneously. When CO and NO co-exist in the system (without NH3), it can provide NO and CO conversion to some extent. However, CO is not as good as NH3 on deNO efficiency. NH3-SCR catalyst is prone to react with SO2, which poisons the catalysts due to its great chemical reactivity with NH3 and the metal on catalysts forming ammonium and metal salts. In addition, the role of moisture and CO have both positive and negative effects to SCR efficiency. The presence of moisture and CO might act as competitors to catalyst active sites and regard the NO removal; nevertheless, they also play a role in protecting catalyst by slowing down the SO2 poisoning effect. In conclusion, the Mn20Fe10/TiO2 catalyst can sustain over 90% deNO efficiency for 36 hrs under the conditions of 250 ℃, 10,000 h-1 space velocity, 15% moisture, 8,000 ppm CO and 20 ppm SO2.
摘要 i
Abstract ii
誌謝 iii
目錄 vi
圖目錄 x
表目錄 xii
第一章、前言 1
1.1研究緣起 1
1.2研究目的 2
第二章、文獻回顧 4
2.1鋼鐵工業與燒結 4
2.1.1鋼鐵工業與生產流程 4
2.1.2燒結理論 6
2.1.3影響燒結過程的因素 8
2.1.4鋼鐵燒結流程與環境影響 8
2.2氮氧化物(NOx) 10
2.2.1 NOx來源、傳輸與生成機制 11
2.2.2 NOx危害 12
2.2.3 NOx減量處理技術 13
2.3選擇性觸媒還原法(SCR, selective catalytic reduction) 14
2.3.1 SCR原理 14
2.3.2氨洩漏(ammonia slip) 16
2.3.3 SCR反應機制 18
2.3.4影響SCR反應效率之因素: 觸媒自身特性 19
2.3.4.1觸媒結晶性(crystallinity) 19
2.3.4.2觸媒金屬分散性(dispersion) 20
2.3.4.3觸媒比表面積與孔洞體積 21
2.3.4.4觸媒表面酸度(surface acidity) 22
2.3.5影響SCR反應效率之因素: 觸媒反應環境 23
2.3.5.1反應氧含量 23
2.3.5.2空間流速 24
2.3.5.3反應溫度 24
2.3.5.4 NH3/NO注入比 25
2.3.5.5觸媒毒化 26
2.4 SCR觸媒 26
2.4.1 SCR觸媒歷史演進 26
2.4.1.1傳統SCR觸媒 27
2.4.1.2中低溫SCR觸媒 28
2.4.2 SCR觸媒活性金屬 29
2.4.2.1添加Mn金屬 30
2.4.2.2添加Fe金屬 31
2.4.2.3添加Mn和Fe金屬 32
2.4.3 SCR觸媒擔體 38
2.4.3.1擔體功用 38
2.4.3.2 TiO2擔體 39
2.4.3.3擔體與觸媒毒化的關係 40
2.5廢氣中其他物種對脫硝效率之影響 41
2.5.1煙塵(dust)和微粒 41
2.5.2水氣 42
2.5.3 SO2 46
2.5.4 水氣與SO2影響 49
2.6 SO2毒化觸媒解決之道 54
2.6.1觸媒使用前-SO2減量或調整觸媒材料 54
2.6.2觸媒使用後-觸媒再生 55
第三章、實驗方法與步驟 59
3.1研究步驟與流程 59
3.2實驗藥品及儀器設備 61
3.2.1實驗藥品及材料 61
3.2.2實驗氣體 61
3.2.3實驗儀器設備 62
3.3實驗方法 63
3.3.1觸媒製備 63
3.3.2觸媒效率測試 64
3.3.2.1脫硝實驗系統 64
3.3.2.2水氣管線流路與計算說明 67
3.3.3氣體分析 69
3.3.4觸媒特性分析 70
第四章、結果與討論 77
4.1觸媒基本物化特性分析 77
4.1.1 ICP金屬元素含量分析 77
4.1.2氮氣吸脫附分析 78
4.1.3 NH3-TPD觸媒表面酸基分析 78
4.1.4 TGA熱重損失分析 80
4.2燒結廢氣組成對脫硝效率之交互影響討論: 無SO2 80
4.2.1水氣含量對脫硝效率的影響 80
4.2.2水氣與還原劑(NH3、CO)對脫硝效率的影響 84
4.2.2.1 NO、CO觸媒催化氧化還原關係 86
4.2.2.2有無水氣影響 87
4.2.2.3還原劑(NH3、CO)影響 88
4.2.2.4溫度影響 89
4.3燒結廢氣組成對脫硝效率之交互影響討論: 有SO2 90
4.3.1水氣與SO2對脫硝效率的影響 90
4.3.2有SO2時水氣含量對脫硝效率的影響與相關性分析 94
4.3.2.1有SO2時水氣含量對脫硝效率的影響 94
4.3.2.2脫硝效率影響之相關性分析 95
4.3.2.3比表面積影響之相關性分析 96
4.3.2.4 NH3-TPD分析影響之相關性分析 98
4.3.2.5 TGA分析影響之相關性分析 104
4.3.2.6觸媒脫硝效率、物化特性與含水量之相關性關係綜合討論 108
4.3.3 SO2毒化下水氣與還原劑(NH3、CO)對脫硝效率的影響 109
4.3.3.1水氣影響 111
4.3.3.2還原劑影響(NH3、CO) 112
4.3.3.3溫度影響 114
4.4模擬燒結廢氣之長效測試 115
4.4.1 SO2濃度影響 115
4.4.2空間流速(GHSV)影響 116
4.4.3溫度影響 118
4.4.4溫度、水氣與SO2綜合影響 119
4.4.5模擬完整廢氣長效測試 120
4.5廢氣成分對SCR脫硝之影響 121
第五章、結論與建議 125
5.1 結論 125
5.2 建議 126
第六章、附錄 128
6.1觸媒脫硝相關資料 128
6.2使用後觸媒相關特性分析資料 144
參考文獻 150
Apostolescu, N., Geiger, B., Hizbullah, K., Jan, M., Kureti, S., Reichert, D., Schott, F., and Weisweiler, W. (2006). "Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts." Applied Catalysis B: Environmental, 62(1-2), 104-114.
Boningari, T., and Smirniotis, P. G. (2016). "Impact of nitrogen oxides on the environment and human health: Mn-based materials for the NOx abatement." Current Opinion in Chemical Engineering, 13, 133-141.
Bosch, H., and Janssen, F. (1988). "Formation and control of nitrogen oxides." Catalysis Today, 2(4), 369-379.
Busca, G., Lietti, L., Ramis, G., and Berti, F. (1998). "Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review." Applied Catalysis B: Environmental, 18(1), 1-36.
Buzková Arvajová, A., Březina, J., Pečinka, R., and Kočí, P. (2018). "Modeling of two-step CO oxidation light-off on Pt/γ-Al2O3 in the presence of C3H6 and NOx." Applied Catalysis B: Environmental, 233, 167-174.
Cai, X., Sun, W., Xu, C., Cao, L., and Yang, J. (2016). "Highly selective catalytic reduction of NO via SO2/H2O-tolerant spinel catalysts at low temperature." Environ Sci Pollut Res Int, 23(18), 18609-18620.
Cant, N. W., and Liu, I. O. Y. (2000). "The mechanism of the selective reduction of nitrogen oxides by hydrocarbons on zeolite catalysts." Catalysis Today, 63(2), 133-146.
Chang, H., Chen, X., Li, J., Ma, L., Wang, C., Liu, C., Schwank, J. W., and Hao, J. (2013). "Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures." Environ Sci Technol, 47(10), 5294-5301.
Chen, J. P., and Yang, R. T. (1990). "Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3." Journal of Catalysis, 125(2), 411-420.
Chen, L., Si, Z., Wu, X., Weng, D., Ran, R., and Yu, J. (2014). "Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A Review." Journal of Rare Earths, 32(10), 907-917.
Chen, X., Zhang, J., Huang, Y., Tong, Z., and Huang, M. (2009). "Catalytic reduction of nitric oxide with carbon monoxide on copper-cobalt oxides supported on nano-titanium dioxide." Journal of Environmental Sciences, 21(9), 1296-1301.
Choo, S. T., Lee, Y. G., Nam, I.-S., Ham, S.-W., and Lee, J.-B. (2000). "Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3." Applied Catalysis A: General, 200(1), 177-188.
Corro, G. (2003). "A highly sulfur resistant Pt-Sn/γ-Al2O3 catalyst for C3H8-NO-O2 reaction under lean conditions." Applied Catalysis B: Environmental, 46(2), 307-317.
Dam-Johansen, K., Hansen, P. F. B., and Rasmussen, S. (1995). "Catalytic reduction of nitric oxide by carbon monoxide over calcined limestone: reversible deactivation in the presence of carbon dioxide." Applied Catalysis B: Environmental, 5(4), 283-304.
Du, X.-s., Gao, X., Cui, L.-w., Fu, Y.-c., Luo, Z.-y., and Cen, K.-f. (2012). "Investigation of the effect of Cu addition on the SO2-resistance of a CeTi oxide catalyst for selective catalytic reduction of NO with NH3." Fuel, 92(1), 49-55.
Du, X., Gao, X., Cui, L., Zheng, Z., Ji, P., Luo, Z., and Cen, K.-f. (2013). "Experimental and theoretical studies on the influence of water vapor on the performance of a Ce-Cu-Ti oxide SCR catalyst." Applied Surface Science, 270, 370-376.
Dvořák, R., Chlápek, P., Jecha, D., Puchýř, R., and Stehlík, P. (2010). "New approach to common removal of dioxins and NOx as a contribution to environmental protection." Journal of Cleaner Production, 18(9), 881-888.
Fang, N., Guo, J., Shu, S., Luo, H., Chu, Y., and Li, J. (2017). "Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR." Chemical Engineering Journal, 325, 114-123.
Feng, Y. S., Liu, S. G., Chen, C. W., Zhao, H. Y., and Xu, Y. S. (2013). "Research Progress of Low-Temperature SCR DeNOx Catalysts." Applied Mechanics and Materials, 320, 629-638.
Forzatti, P. (2000). "Environmental catalysis for stationary applications." Catalysis Today, 62(1), 51-65.
Gao, F., Tang, X., Yi, H., Zhao, S., Li, C., Li, J., Shi, Y., and Meng, X. (2017). "A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations." Catalysts, 7(7).
García-Bordejé, E., Pinilla, J. L., Lázaro, M. J., and Moliner, R. (2006). "NH3-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths: Effect of H2O and SO2 traces in the gas feed." Applied Catalysis B: Environmental, 66(3-4), 281-287.
German, R. M. (2013). "History of sintering: empirical phase." Powder Metallurgy, 56(2), 117-123.
Giraudon, J. M., Nguyen, T. B., Leclercq, G., Siffert, S., Lamonier, J. F., Aboukaïs, A., Vantomme, A., and Su, B. L. (2008). "Chlorobenzene total oxidation over palladium supported on ZrO2, TiO2 nanostructured supports." Catalysis Today, 137(2-4), 379-384.
Gu, T., Liu, Y., Weng, X., Wang, H., and Wu, Z. (2010). "The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3." Catalysis Communications, 12(4), 310-313.
Hamzah, N., Nordin, N. M., Nadzri, A. H. A., Nik, Y. A., Kassim, M. B., and Yarmo, M. A. (2012). "Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media." Applied Catalysis A: General, 419-420, 133-141.
Hong, Z., Wang, Z., and Li, X. (2017). "Catalytic oxidation of nitric oxide (NO) over different catalysts: an overview." Catalysis Science & Technology, 7(16), 3440-3452.
Huang, J., Tong, Z., Huang, Y., and Zhang, J. (2008). "Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica." Applied Catalysis B: Environmental, 78(3-4), 309-314.
Huang, Z., Zhu, Z., and Liu, Z. (2002). "Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures." Applied Catalysis B: Environmental, 39(4), 361-368.
Jabłońska, M., and Palkovits, R. (2016). "Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour—Recent trends and open challenges." Applied Catalysis B: Environmental, 181, 332-351.
Jiang, B. Q., Wu, Z. B., Liu, Y., Lee, S. C., and Ho, W. K. (2010). "DRIFT Study of the SO2 Effect on Low-Temperature SCR Reaction over Fe−Mn/TiO2." The Journal of Physical Chemistry C, 114(11), 4961-4965.
Jin, R., Liu, Y., Wang, Y., Cen, W., Wu, Z., Wang, H., and Weng, X. (2014). "The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature." Applied Catalysis B: Environmental, 148-149, 582-588.
Jin, R., Liu, Y., Wu, Z., Wang, H., and Gu, T. (2010). "Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study." Chemosphere, 78(9), 1160-1166.
Jin, R., Liu, Y., Wu, Z., Wang, H., and Gu, T. (2010). "Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn–Ce/TiO2 catalyst." Catalysis Today, 153(3-4), 84-89.
Kang, M., Park, E. D., Kim, J. M., and Yie, J. E. (2007). "Manganese oxide catalysts for NOx reduction with NH3 at low temperatures." Applied Catalysis A: General, 327(2), 261-269.
Kang, M., Park, J. H., Choi, J. S., Park, E. D., and Yie, J. E. (2007). "Low-temperature catalytic reduction of nitrogen oxides with ammonia over supported manganese oxide catalysts." Korean Journal of Chemical Engineering, 24(1), 191-195.
Kang, S.-J. L. (2005). Sintering: Densification, Grain Growth and Microstructure, Butterworth-Heinemann, Oxford.
Kapteijn, F., Singoredjo, L., Andreini, A., and Moulijn, J. A. (1994). "Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia." Applied Catalysis B: Environmental, 3(2), 173-189.
Kijlstra, W. S., Daamen, J. C. M. L., van de Graaf, J. M., van der Linden, B., Poels, E. K., and Bliek, A. (1996). "Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3." Applied Catalysis B: Environmental, 7(3), 337-357.
Klinik, J., Samojeden, B., Grzybek, T., Suprun, W., Papp, H., and Gläser, R. (2011). "Nitrogen promoted activated carbons as DeNOx catalysts. 2. The influence of water on the catalytic performance." Catalysis Today, 176(1), 303-308.
Lee, T., and Bai, H. (2016). "Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review." AIMS Environmental Science, 3(2), 261-289.
Lee, T., and Bai, H. (2018). "Metal Sulfate Poisoning Effects over MnFe/TiO2 for Selective Catalytic Reduction of NO by NH3 at Low Temperature." Industrial & Engineering Chemistry Research, 57(14), 4848-4858.
Lee, T., Liou, S., and Bai, H. (2017). "Comparison of titania nanotubes and titanium dioxide as supports of low-temperature selective catalytic reduction catalysts under sulfur dioxide poisoning." J Air Waste Manag Assoc, 67(3), 292-305.
Li, C., Yu, J., He, Y., Yu, C., Li, P., Wang, C., Huang, F., and Gao, S. (2018). "The industrial feasibility of low temperature DeNOx in the presence of SOx: a project case in a medium coking plant." RSC Advances, 8(33), 18260-18265.
Li, J., Chang, H., Ma, L., Hao, J., and Yang, R. T. (2011). "Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review." Catalysis Today, 175(1), 147-156.
Li, J., Peng, Y., Chang, H., Li, X., Crittenden, J. C., and Hao, J. (2016). "Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources." Frontiers of Environmental Science & Engineering, 10(3), 413-427.
Li, Y., Wan, Y., Li, Y., Zhan, S., Guan, Q., and Tian, Y. (2016). "Low-Temperature Selective Catalytic Reduction of NO with NH3 over Mn2O3-Doped Fe2O3 Hexagonal Microsheets." ACS Appl Mater Interfaces, 8(8), 5224-5233.
Lin, C.-H., and Bai, H. (2003). "Surface acidity over vanadia/titania catalyst in the selective catalytic reduction for NO removal—in situ DRIFTS study." Applied Catalysis B: Environmental, 42(3), 279-287.
Lin, F., He, Y., Wang, Z., Ma, Q., Whiddon, R., Zhu, Y., and Liu, J. (2016). "Catalytic oxidation of NO by O2 over CeO2–MnOx: SO2 poisoning mechanism." RSC Advances, 6(37), 31422-31430.
Lin, Q., Li, J., Ma, L., and Hao, J. (2010). "Selective catalytic reduction of NO with NH3 over Mn–Fe/USY under lean burn conditions." Catalysis Today, 151(3-4), 251-256.
Liu, C., Shi, J.-W., Gao, C., and Niu, C. (2016). "Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3 : A review." Applied Catalysis A: General, 522, 54-69.
Liu, F., He, H., Zhang, C., Shan, W., and Shi, X. (2011). "Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst." Catalysis Today, 175(1), 18-25.
Liu, R., Xu, Y., Ye, F., Jia, F., and Xu, R. (2017). "Influence of transition metal (Fe, Co, and Ag) doping on the MnOx–CeO2/Ti-bearing blast furnace slag catalyst for selective catalytic reduction of NOx with NH3 at low temperature." New Journal of Chemistry, 41(19), 11299-11307.
Liu, X.-L., Guo, J.-X., Chu, Y.-H., Luo, D.-M., Yin, H.-Q., Sun, M.-C., and Yavuz, R. (2014). "Desulfurization performance of iron supported on activated carbon." Fuel, 123, 93-100.
Liu, Z., Liu, Y., Chen, B., Zhu, T., and Ma, L. (2016). "Novel Fe–Ce–Ti catalyst with remarkable performance for the selective catalytic reduction of NOx by NH3." Catalysis Science & Technology, 6(17), 6688-6696.
Ma, Z., Yang, H., Li, B., Liu, F., and Zhang, X. (2013). "Temperature-Dependent Effects of SO2 on Selective Catalytic Reduction of NO over Fe–Cu–OX/CNTs–TiO2 Catalysts." Industrial & Engineering Chemistry Research, 52(10), 3708-3713.
Madia, G., Koebel, M., Elsener, M., and Wokaun, A. (2002). "Side Reactions in the Selective Catalytic Reduction of NOx with Various NO2 Fractions." Industrial & Engineering Chemistry Research, 41(16), 4008-4015.
Magnusson, M., Fridell, E., and Ingelsten, H. H. (2012). "The influence of sulfur dioxide and water on the performance of a marine SCR catalyst." Applied Catalysis B: Environmental, 111-112, 20-26.
Muzio, L. J., Quartucy, G. C., and Cichanowiczy, J. E. (2002). "Overview and status of post-combustion NOx control: SNCR, SCR and hybrid technologies." International Journal of Environment and Pollution, 17(1-2), 4-30.
Nakhostin Panahi, P. (2017). "Comparative study of ZSM-5 supported transition metal (Cu, Mn, Co, and Fe) nanocatalysts in the selective catalytic reduction of NO with NH3." Environmental Progress & Sustainable Energy, 36(4), 1049-1055.
Notoya, F., Su, C., Sasaoka, E., and Nojima, S. (2001). "Effect of SO2 on the Low-Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia over TiO2, ZrO2, and Al2O3." Industrial & Engineering Chemistry Research, 40(17), 3732-3739.
Pang, C., Zhuo, Y., and Qin, Y. "Research on the NH4HSO4 Decomposition Activity of Different Support-Guidance to the Development of NH4HSO4-Resistant SCR Catalysts for NOx Abatement." Proc., 2018 2nd International Conference on Green Energy and Applications (ICGEA), 254-262.
Pourkhalil, M., Moghaddam, A. Z., Rashidi, A., Towfighi, J., and Mortazavi, Y. (2013). "Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3." Applied Surface Science, 279, 250-259.
Qi, G., and Yang, R. T. (2003). "Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania." Applied Catalysis B: Environmental, 44(3), 217-225.
Qi, G., Yang, R. T., and Chang, R. (2004). "MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures." Applied Catalysis B: Environmental, 51(2), 93-106.
Roy, S., Hegde, M. S., and Madras, G. (2009). "Catalysis for NOx abatement." Applied Energy, 86(11), 2283-2297.
Scheuer, A., Hauptmann, W., Drochner, A., Gieshoff, J., Vogel, H., and Votsmeier, M. (2012). "Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation." Applied Catalysis B: Environmental, 111-112, 445-455.
Selli, E., and Forni, L. (1999). "Comparison between the surface acidity of solid catalysts determined by TPD and FTIR analysis of pre-adsorbed pyridine." Microporous and Mesoporous Materials, 31(1), 129-140.
Selwood, P. W. (1951). "Magnetism and the Structure of Catalytically Active Solids." Advances in Catalysis, W. G. Frankenburg, V. I. Komarewsky, E. K. Rideal, P. H. Emmett, and H. S. Taylor, eds., Academic Press, 27-106.
Shan, W., and Song, H. (2015). "Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature." Catalysis Science & Technology, 5(9), 4280-4288.
Shen, B., Liu, T., Zhao, N., Yang, X., and Deng, L. (2010). "Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3." Journal of Environmental Sciences, 22(9), 1447-1454.
Shen, B., Zhang, X., Ma, H., Yao, Y., and Liu, T. (2013). "A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O." Journal of Environmental Sciences, 25(4), 791-800.
Shen, Y., Ge, X., and Chen, M. (2016). "Catalytic oxidation of nitric oxide (NO) with carbonaceous materials." RSC Advances, 6(10), 8469-8482.
Sheng, Z., Hu, Y., Xue, J., Wang, X., and Liao, W. (2012). "SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3." Journal of Rare Earths, 30(7), 676-682.
Shi, Y., Tan, S., Wang, X., Li, M., Li, S., and Li, W. (2016). "Regeneration of sulfur-poisoned CeO2 catalyst for NH3 -SCR of NOx." Catalysis Communications, 86, 67-71.
Shu, Y., Aikebaier, T., Quan, X., Chen, S., and Yu, H. (2014). "Selective catalytic reaction of NOx with NH3 over Ce–Fe/TiO2-loaded wire-mesh honeycomb: Resistance to SO2 poisoning." Applied Catalysis B: Environmental, 150-151, 630-635.
Si, Z., Weng, D., Wu, X., and Jiang, Y. (2010). "Roles of Lewis and Brønsted acid sites in NO reduction with ammonia on CeO2-ZrO2-NiO-SO42− catalyst." Journal of Rare Earths, 28(5), 727-731.
Song, L., Chao, J., Fang, Y., He, H., Li, J., Qiu, W., and Zhang, G. (2016). "Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction." Chemical Engineering Journal, 303, 275-281.
Stegenga, S., van Soest, R., Kapteijn, F., and Moulijn, J. A. (1993). "Nitric oxide reduction and carbon monoxide oxidation over carbon-supported copper-chromium catalysts." Applied Catalysis B: Environmental, 2(4), 257-275.
Su, W., Li, Z., Zhang, Y., Meng, C., and Li, J. (2017). "Identification of sulfate species and their influence on SCR performance of Cu/CHA catalyst." Catalysis Science & Technology, 7(7), 1523-1528.
Tang, C., Wang, H., Dong, S., Zhuang, J., and Qu, Z. (2018). "Study of SO2 effect on selective catalytic reduction of NOx with NH3 over Fe/CNTs: The change of reaction route." Catalysis Today, 307, 2-11.
Tang, C., Zhang, H., and Dong, L. (2016). "Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3." Catalysis Science & Technology, 6(5), 1248-1264.
Tang, X., Hao, J., Xu, W., and Li, J. (2007). "Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods." Catalysis Communications, 8(3), 329-334.
Turco, M., Lisi, L., Pirone, R., and Ciambelli, P. (1994). "Effect of water on the kinetics of nitric oxide reduction over a high-surface-area V2O5/TiO2 catalyst." Applied Catalysis B: Environmental, 3(2), 133-149.
Ueda, A., and Haruta, M. (1999). "Nitric Oxide Reduction with Hydrogen, Carbon Monoxide, and Hydrocarbons over Gold Catalysts." Gold Bulletin, 32(1), 3-11.
Walker, A. (2016). "Future Challenges and Incoming Solutions in Emission Control for Heavy Duty Diesel Vehicles." Topics in Catalysis, 59(8-9), 695-707.
Wang, Z., Wang, L., Cheng, X., Ma, C., and Qin, Y. (2017). "Investigation of SO2 tolerance of Ce-modified activated semi-coke based catalysts for the NO + CO reaction." RSC Advances, 7(84), 53631-53642.
Wu, Z., Jiang, B., and Liu, Y. (2008). "Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia." Applied Catalysis B: Environmental, 79(4), 347-355.
Wu, Z., Jin, R., Liu, Y., and Wang, H. (2008). "Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature." Catalysis Communications, 9(13), 2217-2220.
Xiao, X., Xiong, S., Shi, Y., Shan, W., and Yang, S. (2016). "Effect of H2O and SO2 on the Selective Catalytic Reduction of NO with NH3 Over Ce/TiO2 Catalyst: Mechanism and Kinetic Study." The Journal of Physical Chemistry C, 120(2), 1066-1076.
Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., and Huang, Z. (2004). "Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbentII. Promotion of SCR activity by SO2 at high temperatures." Journal of Catalysis, 224(1), 42-49.
Xiong, S., Liao, Y., Xiao, X., Dang, H., and Yang, S. (2015). "The mechanism of the effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel." Catalysis Science & Technology, 5(4), 2132-2140.
Xiong, Y., Tang, C., Yao, X., Zhang, L., Li, L., Wang, X., Deng, Y., Gao, F., and Dong, L. (2015). "Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx /CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3." Applied Catalysis A: General, 495, 206-216.
Yadav, D., and Prasad, R. (2016). "Low Temperature de-NOx Technology-a Challenge for Vehicular Exhaust and its Remedation: An Overview." Procedia Technology, 24, 639-644.
Yan, D.-j., Yu, Y., Huang, X.-m., Liu, S.-j., and Liu, Y.-h. (2016). "Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature." Journal of Fuel Chemistry and Technology, 44(2), 232-238.
Yan, Q., Yang, R., Zhang, Y., Umar, A., Huang, Z., and Wang, Q. (2016). "A comprehensive review on selective catalytic reduction catalysts for NOx
emission abatement from municipal solid waste incinerators." Environmental Progress & Sustainable Energy, 35(4), 1061-1069.
Yang, B., Shen, Y., Shen, S., and Zhu, S. (2013). "Regeneration of the deactivated TiO2-ZrO2-CeO2/ATS catalyst for NH3-SCR of NOx in glass furnace." Journal of Rare Earths, 31(2), 130-136.
Yang, S., Wang, C., Li, J., Yan, N., Ma, L., and Chang, H. (2011). "Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study." Applied Catalysis B: Environmental, 110, 71-80.
Yang, W., Liu, F., Xie, L., Lian, Z., and He, H. (2016). "Effect of V2O5 Additive on the SO2 Resistance of a Fe2O3/AC Catalyst for NH3-SCR of NOx at Low Temperatures." Industrial & Engineering Chemistry Research, 55(10), 2677-2685.
Yao, X., Zhao, R., Chen, L., Du, J., Tao, C., Yang, F., and Dong, L. (2017). "Selective catalytic reduction of NOx by NH3 over CeO2 supported on TiO2 : Comparison of anatase, brookite, and rutile." Applied Catalysis B: Environmental, 208, 82-93.
Youn, S., Song, I., Lee, H., Cho, S. J., and Kim, D. H. (2018). "Effect of pore structure of TiO2 on the SO2 poisoning over V2O5 /TiO2 catalysts for selective catalytic reduction of NOx with NH3." Catalysis Today, 303, 19-24.
Yu, J., Guo, F., Wang, Y., Zhu, J., Liu, Y., Su, F., Gao, S., and Xu, G. (2010). "Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3." Applied Catalysis B: Environmental, 95(1-2), 160-168.
Zhang, F., Tian, G., Wang, H., Wang, H., Zhang, C., Cui, Y., Huang, J., and Shu, Y. (2016). "CeO2/TiO2 monolith catalyst for the selective catalytic reduction of NOx with NH3: Influence of H2O and SO2." Chemical Research in Chinese Universities, 32(3), 461-467.
Zhang, L., Qu, H., Du, T., Ma, W., and Zhong, Q. (2016). "H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni–Ce–La composite oxide nanocrystals in NH3-SCR." Chemical Engineering Journal, 296, 122-131.
Zhang, M., Huang, B., Jiang, H., and Chen, Y. (2017). "Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx." Chinese Journal of Chemical Engineering, 25(12), 1695-1705.
Zhang, S., Zhang, B., Liu, B., and Sun, S. (2017). "A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: reaction mechanism and catalyst deactivation." RSC Advances, 7(42), 26226-26242.
Zhang, Z., Yang, B. C., Deng, M. G., Hu, Y. D., and Wang, B. H. (2004). Synthesis and characterization of nanostructured MnO2 for supercapacitor.
Zhao, N., Li, L., Pan, S. W., and Tang, L. H. (2014). "Sulfur Poisoning and Regeneration of SCR Catalyst Based on V2O5/TiO2." Advanced Materials Research, 1010-1012, 880-884.
Zhou, C., Zhang, L., Deng, Y., and Ma, S.-C. (2016). "Research progress on ammonium bisulfate formation and control in the process of selective catalytic reduction." Environmental Progress & Sustainable Energy, 35(6), 1664-1672.
Zhou, L. S., Ming, D. Z., Li, Z. X., and Li, H. P. (2013). "The Mechanism of Thermal Decomposition for Ammonium Sulfate and Ammonium Bisulfate via Addition of Ferric Oxide." Advanced Materials Research, 803, 68-71.
Zhu, Y., Zhang, Y., Xiao, R., Huang, T., and Shen, K. (2017). "Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR." Catalysis Communications, 88, 64-67.
Zhu, Z., Liu, Z., Liu, S., and Niu, H. (2001). "Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts: effect of metal oxides addition and SO2." Applied Catalysis B: Environmental, 30(3), 267-276.
Zhu, Z., Liu, Z., Niu, H., Liu, S., Hu, T., Liu, T., and Xie, Y. (2001). "Mechanism of SO2 Promotion for NO Reduction with NH3 over Activated Carbon-Supported Vanadium Oxide Catalyst." Journal of Catalysis, 197(1), 6-16.
朱冠璋 (2015). "燒結氣氛與燒結溫度對430L、410L、316L、304L不銹鋼特性之影響." 碩士, 國立成功大學, 台南市.
吳以壯 (2005). "以選擇性觸媒還原技術同時去除NO及VOCs之效率測試研究." 碩士, 國立交通大學, 新竹市.
柯怡安 (2017). "非貴金屬波洛斯凱特型觸媒應用於三元觸媒轉化之效能與氧化還原反應分析研究." 碩士, 國立交通大學, 新竹市.
張伯瑜 (2013). "真空燒結及熱均壓處理對奈米碳化鎢超硬合金燒結性質與顯微結構之研究." 碩士, 國立臺北科技大學, 台北市.
張佑任 (2015). "以噴霧乾燥法合成Mn-Fe/TiO2觸媒用於低溫SCR處理NOx之研究." 碩士, 國立交通大學, 新竹市.
劉思妤 (2013). "以奈米鈦管及二氧化鈦為擔體製備低溫SCR觸媒處理NOx之SO2毒化影響研究." 碩士, 國立交通大學, 新竹市.
蔡振球 (2006). "都市下水污泥灰燒結輕質化特性之研究." 博士, 國立中央大學, 桃園縣.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊