跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏立寧
研究生(外文):Li-Ning Wei
論文名稱:局部點眼異體脂肪來源間葉幹細胞治療在犬隻乾眼症患者中成效
論文名稱(外文):Topical Allogeneic Adipose-Derived Mesenchymal Stem Cell Therapy in Canine Keratoconjunctivitis Sicca
指導教授:林中天劉逸軒
指導教授(外文):Chung-Tien LinI-Hsuan Liu
口試委員:林荀龍武敬和
口試委員(外文):Shiun-Long LinChing-Ho Wu
口試日期:2019-01-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床動物醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:87
中文關鍵詞:犬隻乾眼症同種異體脂肪來源間葉幹細胞局部點眼
DOI:10.6342/NTU201904009
相關次數:
  • 被引用被引用:0
  • 點閱點閱:635
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來幹細胞運用於各式疾病治療與組織再生,又以間葉幹細胞因其容易取得、不易有倫理問題、穩定且安全、可廣泛應用於臨床的可行性而逐漸受到重視,其中骨髓來源間葉幹細胞發現得較早,所以早期的研究以骨髓來源間葉幹細胞為大宗,然而近十年脂肪來源幹細胞由於其取得更為容易,尤其台灣自2017年起實行零安樂死政策,犬隻骨髓取得更加困難,因此我們選擇犬隻脂肪來源間葉幹細胞作為研究題材,有機會於未來廣泛應用。犬乾眼症屬自體免疫引起,因此乾眼症犬一直被視為自體免疫疾病的重要動物模型,過去犬乾眼症透過免疫抑制劑點眼控制然而效果有限,過去三年有數篇研究使用幹細胞於眼周注射治療有不錯的療效,也因此期待間葉幹細胞之免疫調節的效果能為此疾病帶來新的契機,然而臨床上若要進行眼周注射需要鎮靜、甚至全身麻醉,也可能在注射的過程中導致醫源性傷害,因此本研究在探討使用非侵入式的局部點眼給藥方式能否給予臨床犬乾眼症病患有效的治療。首先,脂肪來源間葉幹細胞成功的被分離並確認其具有三系分化與免疫調節之特性,並測試其製成點眼劑之適當保存方式。在幹細胞臨床試驗中中,患有乾眼症犬隻,根據過去是否有用過點眼免疫抑制劑分為兩組,給予連續六週、一週一次的幹細胞點眼液治療,並於第三、六、九週進行眼科檢查,包括淚液分泌試驗、角膜螢光素染色和淚膜破裂時間與淚液滲透壓測試,並透過分泌物、結膜充血、角膜病變程度來評估臨床上的變化。結果淚液量與品質在接受幹細胞點眼治療後皆有顯著的進步,過半數的治療病患能改善淚液量,尤其是過去對免疫抑制劑無反應的組別中,亦有56.5%的病患淚液量有效的增多,而臨床症狀減緩能增進動物眼睛舒適度、改善生活品質。基於以上結果,連續六週給予脂肪來源間葉幹細胞點眼治療,有潛力成為犬乾眼症傳統治療的替代方案,相較於傳統治療一天需兩到三次的長期頻繁點藥,幹細胞治療僅需六次的療程,對於飼主配合度不高、或對免疫抑制劑反應不佳的病患,局部點眼脂肪來源間葉幹細胞有有助於改善犬乾眼症。
In the past two decades, mesenchymal stem cells have been tested in the treatment of various diseases and tissue regeneration. Among these mesenchymal stem cells have gradually gained much attention because of their availability, stability, safety, low-ethical issue and with wide ranges of potential therapeutic applications. Bone marrow-derived mesenchymal stem cells were found and used earlier, so the bulk of early studies used them. However, adipose-derived stem cells are much easier to access and can be acquired in a large quantity. Especially when the euthanasia of stray animals was banned in Taiwan after early 2017, it is even more difficult to obtain bone marrow from dogs. That is why we chose canine adipose-derived mesenchymal stem cells (cAD-MSCs) as the research subjects with potential future applications.
Canine keratoconjunctivitis sicca (KCS) is thought to be an immune-mediated disease, therefore canine KCS patients provide a useful model of autoimmune-mediated diseases. Current therapy of canine KCS mainly uses immunosuppressants, but the effectiveness was limited in some patients. In the past three years, some studies showed the results of the use of mesenchymal stem cells in treating canine KCS via periocular injections. However, the periocular injection procedure requires sedation or general anesthesia, and may lead to iatrogenic or incidental injury during the injection process. The aim of this study was to investigate the efficacy of topical allogenic adipose-derived stem cells in clinical patients of canine KCS.
First, adipose-derived stem cells were isolated and confirmed for their capability of differentiation and immunomodulatory properties. In addition, preparation methods for eye drops of cAD-MSCs was developed and its optimal preservation was tested. Secondly, canine KCS patients were included and divided into two groups based on history of previous therapy for clinical trial. All patients received topical canine adipose-derived mesenchymal stem cells (cAD-MSCs) therapy weekly for 6 consecutive weeks and complete ophthalmic examinations were performed at baseline and 3rd, 6th, 9th week, respectively. A complete ophthalmic examination included Schirmers tear test-1 (STT-1), tear break-up time(TBUT), fluorescein stain, tear osmolarity measurement by i-PEN and assessments the severity of clinical signs such as mucoid discharge, conjunctival hyperemia, and corneal changes.
Based on the results of the clinical trials, the quantity and quality of tears have improved significantly following topical cAD-MSCs treatment. More than half of the patients were found improved in the tear quantity. In particular, 56.5% of the patients that were unresponsive to prior immunosuppressant therapy had an effective increase in tear volume. As relieved from symptoms and uncomfortable, patients’ quality of life was improved following treatment. Based on these results, weekly administration of cAD-MSCs for six consecutive weeks may serve as a good alternative to cyclosporine A or tacrolimus for treatment of canine KCS. Topical cAD-MSCs therapy requires once weekly for six times. It’s much easier for dog owners when compared with traditional treatment, that required frequent administration with two to three times daily. To sum up, topical cAD-MSCs may be beneficial especially in KCS patients with poor owner compliance for frequent daily use of eye drops or those who are unresponsive to immunosuppressant therapy.
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Stem cells 1
1.1.1 Mesenchymal stem cells 2
1.1.2 Adipose-derived stem cells 5
1.1.3 Canine adipose-derived stem cells 7
1.2 Canine keratoconjunctivitis sicca (KCS) 10
1.2.1 The pathogenesis of canine KCS 10
1.2.2 The clinical signs and diagnosis in KCS 11
1.2.3 The medical treatment of KCS 13
Chapter 2 Specific aims 18
Chapter 3 Materials and Methods 20
3.1 Canine adipose-derived mesenchymal stem cells 20
3.1.1 Inclusion criteria of donors 20
3.1.2 Isolation of cAD-MSCs 20
3.1.3 Passaging, cryopreservation, and reviving procedure of cAD-MSCs 22
3.1.4 Colony forming unit (CFU) assay 23
3.1.5 Trilineage differentiation of cAD-MSCs 24
3.1.6 Immunophenotyping of cAD-MSCs 26
3.1.7 Immunomodulatory effect of cAD-MSCs 27
3.2 The cAD-MSCs eye drops 29
3.2.1 Preparation of eye drops 29
3.2.2 Cell viability in eye drops 29
3.3 Clinical trial – the efficacy of topical cAD-MSCs 29
3.3.1 Inclusion and exclusion criteria of patients 29
3.3.2 Grouping and protocols 31
3.3.3 Clinical evaluation 31
3.4 Statistical analysis 33
Chapter 4 Results 40
4.1 Isolation of cAD-MSCs 40
4.2 Colony forming unit (CFU) assay 40
4.3 Trilineage Differentiation of cAD-MSCs 40
4.4 Immunophenotyping of cAD-MSCs 41
4.5 Immunomodulatory effect of cAD-MSCs 42
4.6 Cell viability in the eye drops 43
4.7 Study population in the clinical trial 43
4.8 The efficacy of topical cAD-MSCs 45
4.9 Case presentation 47
4.9.1 Group 1: without history of immunosuppressant therapy 47
4.9.2 Group 2: unresponsive to prior immunosuppressant therapy 48
Chapter 5 Discussion 67
5.1 Harvesting of cAD-MSCs 67
5.2 Characterization of cAD-MSCs 68
5.3 Immunomodulatory effect of cAD-MSCs 70
5.4 The cAD-MSCs eye drops 71
5.5 The efficacy of topical cAD-MSCs 72
Chapter 6 Conclusion 76
References 77
Appendix A 84
Appendix B 87
Bahamondes, F., Flores, E., Cattaneo, G., Bruna, F., & Conget, P. (2017). Omental adipose tissue is a more suitable source of canine Mesenchymal stem cells. BMC Vet Res, 13(1), 166. doi:10.1186/s12917-017-1053-0
Bajada, S., Mazakova, I., Richardson, J. B., & Ashammakhi, N. (2008). Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med, 2(4), 169-183. doi:10.1002/term.83
Benelli, U., Nardi, M., Posarelli, C., & Albert, T. G. (2010). Tear osmolarity measurement using the TearLab Osmolarity System in the assessment of dry eye treatment effectiveness. Cont Lens Anterior Eye, 33(2), 61-67. doi:10.1016/j.clae.2010.01.003
Berdoulay, A., English, R. V., & Nadelstein, B. (2005). Effect of topical 0.02% tacrolimus aqueous suspension on tear production in dogs with keratoconjunctivitis sicca. Vet Ophthalmol, 8(4), 225-232. doi:10.1111/j.1463-5224.2005.00390.x
Bernardo, M. E., Locatelli, F., & Fibbe, W. E. (2009). Mesenchymal stromal cells. Ann N Y Acad Sci, 1176, 101-117. doi:10.1111/j.1749-6632.2009.04607.x
Beyazyildiz, E., Pinarli, F. A., Beyazyildiz, O., Hekimoglu, E. R., Acar, U., Demir, M. N., . . . Delibasi, T. (2014). Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model. Stem Cells Int, 2014, 250230. doi:10.1155/2014/250230
Bianco, P., Robey, P. G., & Simmons, P. J. (2008). Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell, 2(4), 313-319. doi:10.1016/j.stem.2008.03.002
Biehl, J. K., & Russell, B. (2009). Introduction to stem cell therapy. J Cardiovasc Nurs, 24(2), 98-103; quiz 104-105. doi:10.1097/JCN.0b013e318197a6a5
Bittencourt, M. K., Barros, M. A., Martins, J. F., Vasconcellos, J. P., Morais, B. P., Pompeia, C., . . . Wenceslau, C. V. (2016). Allogeneic Mesenchymal Stem Cell Transplantation in Dogs With Keratoconjunctivitis Sicca. Cell Med, 8(3), 63-77. doi:10.3727/215517916X693366
Black, L. L., Gaynor, J., Adams, C., Dhupa, S., Sams, A. E., Taylor, R., . . . Harman, R. (2008). Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther, 9(3), 192-200.
Bogers, S. H. (2018). Cell-Based Therapies for Joint Disease in Veterinary Medicine: What We Have Learned and What We Need to Know. Front Vet Sci, 5, 70. doi:10.3389/fvets.2018.00070
Both, T., Dalm, V. A., van Hagen, P. M., & van Daele, P. L. (2017). Reviewing primary Sjogren''s syndrome: beyond the dryness - From pathophysiology to diagnosis and treatment. Int J Med Sci, 14(3), 191-200. doi:10.7150/ijms.17718
Braun, R. J., King-Smith, P. E., Begley, C. G., Li, L., & Gewecke, N. R. (2015). Dynamics and function of the tear film in relation to the blink cycle. Prog Retin Eye Res, 45, 132-164. doi:10.1016/j.preteyeres.2014.11.001
Burrow, K. L., Hoyland, J. A., & Richardson, S. M. (2017). Human Adipose-Derived Stem Cells Exhibit Enhanced Proliferative Capacity and Retain Multipotency Longer than Donor-Matched Bone Marrow Mesenchymal Stem Cells during Expansion In Vitro. Stem Cells Int, 2017, 2541275. doi:10.1155/2017/2541275
Caplan, A. I. (1991). Mesenchymal stem cells. J Orthop Res, 9(5), 641-650. doi:10.1002/jor.1100090504
Chang, Y. P., Hong, H. P., Lee, Y. H., & Liu, I. H. (2015). The canine epiphyseal-derived mesenchymal stem cells are comparable to bone marrow derived-mesenchymal stem cells. J Vet Med Sci, 77(3), 273-280. doi:10.1292/jvms.14-0265
Cho, Y. B., Park, K. J., Yoon, S. N., Song, K. H., Kim, D. S., Jung, S. H., . . . Yu, C. S. (2015). Long-Term Results of Adipose-Derived Stem Cell Therapy for the Treatment of Crohn''s Fistula. STEM CELLS Translational Medicine, 4(5), 532-537. doi:10.5966/sctm.2014-0199
Chow, L., Johnson, V., Coy, J., Regan, D., & Dow, S. (2017). Mechanisms of Immune Suppression Utilized by Canine Adipose and Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Dev, 26(5), 374-389. doi:10.1089/scd.2016.0207
DeLuca, L. A., Glass, S. G., Johnson, R. E., & Burger, M. (2006). Description and evaluation of a canine volunteer blood donor program. J Appl Anim Welf Sci, 9(2), 129-141. doi:10.1207/s15327604jaws0902_3
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., . . . Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. doi:10.1080/14653240600855905
Ferreira, C. C. L. S. M. (2017). Cryopreservation and Thawing Protocol of Mesenchymal Stem Cells for use in Veterinary Medicine Cell Therapy.
Friedenstein, A. J., Chailakhyan, R. K., & Gerasimov, U. V. (1987). Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Proliferation, 20(3), 263-272. doi:10.1111/j.1365-2184.1987.tb01309.x
Gelatt, K. N., Peiffer, R. L., Jr., Erickson, J. L., & Gum, G. G. (1975). Evaluation of tear formation in the dog, using a modification of the Schirmer tear test. J Am Vet Med Assoc, 166(4), 368-370.
Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circ Res, 100(9), 1249-1260. doi:10.1161/01.RES.0000265074.83288.09
Guercio, A., Di Marco, P., Casella, S., Cannella, V., Russotto, L., Purpari, G., . . . Piccione, G. (2012). Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol Int, 36(2), 189-194. doi:10.1042/CBI20110304
Harman, R., Carlson, K., Gaynor, J., Gustafson, S., Dhupa, S., Clement, K., . . . Adams, C. (2016). A Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the Treatment of Osteoarthritis in Dogs. Front Vet Sci, 3, 81. doi:10.3389/fvets.2016.00081
Hass, R., Kasper, C., Böhm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling, 9(1), 12. doi:10.1186/1478-811x-9-12
Izci, C., Celik, I., Alkan, F., Ogurtan, Z., Ceylan, C., Sur, E., & Ozkan, Y. (2002). Histologic characteristics and local cellular immunity of the gland of the third eyelid after topical ophthalmic administration of 2% cyclosporine for treatment of dogs with keratoconjunctivitis sicca. Am J Vet Res, 63(5), 688-694.
Jossen, V., van den Bos, C., Eibl, R., & Eibl, D. (2018). Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol, 102(9), 3981-3994. doi:10.1007/s00253-018-8912-x
Kang, M. H., & Park, H. M. (2014). Evaluation of adverse reactions in dogs following intravenous mesenchymal stem cell transplantation. Acta Vet Scand, 56, 16. doi:10.1186/1751-0147-56-16
Kaswan, R. L., & Salisbury, M. A. (1990). A new perspective on canine keratoconjunctivitis sicca. Treatment with ophthalmic cyclosporine. Vet Clin North Am Small Anim Pract, 20(3), 583-613.
Kaswan, R. L., Salisbury, M. A., & Ward, D. A. (1989). Spontaneous canine keratoconjunctivitis sicca. A useful model for human keratoconjunctivitis sicca: treatment with cyclosporine eye drops. Arch Ophthalmol, 107(8), 1210-1216.
Kim, H. S., Kim, K. H., Kim, S. H., Kim, Y. S., Koo, K. T., Kim, T. I., . . . Lee, Y. M. (2010). Immunomodulatory effect of canine periodontal ligament stem cells on allogenic and xenogenic peripheral blood mononuclear cells. J Periodontal Implant Sci, 40(6), 265-270. doi:10.5051/jpis.2010.40.6.265
Kim, J. W., Lee, J. H., Lyoo, Y. S., Jung, D. I., & Park, H. M. (2013). The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds. Vet Dermatol, 24(2), 242-e253. doi:10.1111/vde.12011
Kivity, S., Arango, M. T., Ehrenfeld, M., Tehori, O., Shoenfeld, Y., Anaya, J. M., & Agmon-Levin, N. (2014). Infection and autoimmunity in Sjogren''s syndrome: a clinical study and comprehensive review. J Autoimmun, 51, 17-22. doi:10.1016/j.jaut.2014.02.008
Lallemand, F., Schmitt, M., Bourges, J. L., Gurny, R., Benita, S., & Garrigue, J. S. (2017). Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial efforts. Eur J Pharm Biopharm, 117, 14-28. doi:10.1016/j.ejpb.2017.03.006
Li, C.-y., Wu, X.-y., Tong, J.-b., Yang, X.-x., Zhao, J.-l., Zheng, Q.-f., . . . Ma, Z.-j. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy, 6(1). doi:10.1186/s13287-015-0066-5
Lin, H., & Yiu, S. C. (2014). Dry eye disease: A review of diagnostic approaches and treatments. Saudi J Ophthalmol, 28(3), 173-181. doi:10.1016/j.sjopt.2014.06.002
Lin, K.-J., Loi, M.-X., Lien, G.-S., Cheng, C.-F., Pao, H.-Y., Chang, Y.-C., . . . Ho, J. H.-C. (2013). Topical administration of orbital fat-derived stem cells promotes corneal tissue regeneration. Stem Cell Research & Therapy, 4(3), 72. doi:10.1186/scrt223
Ma, S., Xie, N., Li, W., Yuan, B., Shi, Y., & Wang, Y. (2014). Immunobiology of mesenchymal stem cells. Cell Death Differ, 21(2), 216-225. doi:10.1038/cdd.2013.158
Maleki, M., Ghanbarvand, F., Reza Behvarz, M., Ejtemaei, M., & Ghadirkhomi, E. (2014). Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells, 7(2), 118-126. doi:10.15283/ijsc.2014.7.2.118
Marquez-Curtis, L. A., Janowska-Wieczorek, A., McGann, L. E., & Elliott, J. A. (2015). Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology, 71(2), 181-197. doi:10.1016/j.cryobiol.2015.07.003
Martinello, T., Bronzini, I., Maccatrozzo, L., Mollo, A., Sampaolesi, M., Mascarello, F., . . . Patruno, M. (2011). Canine adipose-derived-mesenchymal stem cells do not lose stem features after a long-term cryopreservation. Res Vet Sci, 91(1), 18-24. doi:10.1016/j.rvsc.2010.07.024
Marx, C., Silveira, M. D., Selbach, I., da Silva, A. S., Braga, L. M., Camassola, M., & Nardi, N. B. (2014). Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells Int, 2014, 391274. doi:10.1155/2014/391274
Mendicino, M., Bailey, A. M., Wonnacott, K., Puri, R. K., & Bauer, S. R. (2014). MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell, 14(2), 141-145. doi:10.1016/j.stem.2014.01.013
Moore, C. P., McHugh, J. B., Thorne, J. G., & Phillips, T. E. (2001). Effect of cyclosporine on conjunctival mucin in a canine keratoconjunctivitis sicca model. Invest Ophthalmol Vis Sci, 42(3), 653-659.
Nagai, N., Ito, Y., Okamoto, N., & Shimomura, Y. (2012). [In vitro evaluation of corneal damages after instillation of eye drops using rat debrided corneal epithelium: changes of corneal damage due to benzalkonium chloride by addition of thickening agents]. Yakugaku Zasshi, 132(7), 837-843.
Neupane, M., Chang, C.-C., Kiupel, M., & Yuzbasiyan-Gurkan, V. (2008). Isolation and Characterization of Canine Adipose–Derived Mesenchymal Stem Cells. Tissue Engineering Part A, 14(6), 1007-1015. doi:10.1089/ten.tea.2007.0207
Nolfi, J., & Caffery, B. (2017). Randomized comparison of in vivo performance of two point-of-care tear film osmometers. Clin Ophthalmol, 11, 945-950. doi:10.2147/OPTH.S135068
Ofri, R., Lambrou, G. N., Allgoewer, I., Graenitz, U., Pena, T. M., Spiess, B. M., & Latour, E. (2009). Clinical evaluation of pimecrolimus eye drops for treatment of canine keratoconjunctivitis sicca: a comparison with cyclosporine A. Vet J, 179(1), 70-77. doi:10.1016/j.tvjl.2007.08.034
Owen, M., & Friedenstein, A. J. (1988). Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp, 136, 42-60.
Palmer, S. L., Bowen, P. A., 2nd, & Green, K. (1995). Tear flow in cyclosporine recipients. Ophthalmology, 102(1), 118-121.
Park, S. A., Reilly, C. M., Wood, J. A., Chung, D. J., Carrade, D. D., Deremer, S. L., . . . Murphy, C. J. (2013). Safety and immunomodulatory effects of allogeneic canine adipose-derived mesenchymal stromal cells transplanted into the region of the lacrimal gland, the gland of the third eyelid and the knee joint. Cytotherapy, 15(12), 1498-1510. doi:10.1016/j.jcyt.2013.06.009
Prockop, D. J., & Olson, S. D. (2007). Clinical trials with adult stem/progenitor cells for tissue repair: let''s not overlook some essential precautions. Blood, 109(8), 3147-3151.
Puissant, B., Barreau, C., Bourin, P., Clavel, C., Corre, J., Bousquet, C., . . . Blancher, A. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol, 129(1), 118-129. doi:10.1111/j.1365-2141.2005.05409.x
Radziejewski, K., & Balicki, I. (2016). Comparative clinical evaluation of tacrolimus and cyclosporine eye drops for the treatment of canine keratoconjunctivitis sicca. Acta Vet Hung, 64(3), 313-329. doi:10.1556/004.2016.030
Requicha, J. F., Viegas, C. A., Albuquerque, C. M., Azevedo, J. M., Reis, R. L., & Gomes, M. E. (2012). Effect of anatomical origin and cell passage number on the stemness and osteogenic differentiation potential of canine adipose-derived stem cells. Stem Cell Rev, 8(4), 1211-1222. doi:10.1007/s12015-012-9397-0
Rhodes, M., Heinrich, C., Featherstone, H., Braus, B., Manning, S., Cripps, P. J., & Renwick, P. (2012). Parotid duct transposition in dogs: a retrospective review of 92 eyes from 1999 to 2009. Vet Ophthalmol, 15(4), 213-222. doi:10.1111/j.1463-5224.2011.00972.x
Russell, K. A., Chow, N. H., Dukoff, D., Gibson, T. W., LaMarre, J., Betts, D. H., & Koch, T. G. (2016). Characterization and Immunomodulatory Effects of Canine Adipose Tissue- and Bone Marrow-Derived Mesenchymal Stromal Cells. PLoS One, 11(12), e0167442. doi:10.1371/journal.pone.0167442
Ryu, H.-H., Lim, J.-H., Byeon, Y.-E., Park, J.-R., Seo, M.-S., Lee, Y.-W., . . . Kweon, O.-K. (2009). Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. Journal of Veterinary Science, 10(4). doi:10.4142/jvs.2009.10.4.273
Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., . . . Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109(1), 228-234. doi:10.1182/blood-2006-02-002246
Screven, R., Kenyon, E., Myers, M. J., Yancy, H. F., Skasko, M., Boxer, L., . . . Zhu, M. (2014). Immunophenotype and gene expression profile of mesenchymal stem cells derived from canine adipose tissue and bone marrow. Vet Immunol Immunopathol, 161(1-2), 21-31. doi:10.1016/j.vetimm.2014.06.002
Smith, R. K., Korda, M., Blunn, G. W., & Goodship, A. E. (2003). Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J, 35(1), 99-102.
Spriet, M., Hunt, G. B., Walker, N. J., & Borjesson, D. L. (2015). Scintigraphic tracking of mesenchymal stem cells after portal, systemic intravenous and splenic administration in healthy beagle dogs. Vet Radiol Ultrasound, 56(3), 327-334. doi:10.1111/vru.12243
Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O., & Michalek, J. (2012). Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev, 21(14), 2724-2752. doi:10.1089/scd.2011.0722
Vieira, N. M., Brandalise, V., Zucconi, E., Secco, M., Strauss, B. E., & Zatz, M. (2010). Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. Cell Transplant, 19(3), 279-289. doi:10.3727/096368909X481764
Villatoro, A. J., Fernandez, V., Claros, S., Rico-Llanos, G. A., Becerra, J., & Andrades, J. A. (2015). Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. Biomed Res Int, 2015, 527926. doi:10.1155/2015/527926
Villatoro, A. J., Hermida-Prieto, M., Fernandez, V., Farinas, F., Alcoholado, C., Rodriguez-Garcia, M. I., . . . Becerra, J. (2018). Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with refractory atopic dermatitis: clinical efficacy and safety. Vet Rec, 183(21), 654. doi:10.1136/vr.104867
Visser, H. E., Tofflemire, K. L., Love-Myers, K. R., Allbaugh, R. A., Ellinwood, N. M., Dees, D. D., . . . Whitley, R. D. (2017). Schirmer tear test I in dogs: results comparing placement in the ventral vs. dorsal conjunctival fornix. Vet Ophthalmol, 20(6), 522-525. doi:10.1111/vop.12462
Wang, M., Yuan, Q., & Xie, L. (2018). Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem cells international, 2018.
Wei, X. E., Markoulli, M., Zhao, Z., & Willcox, M. D. (2013). Tear film break-up time in rabbits. Clin Exp Optom, 96(1), 70-75. doi:10.1111/j.1444-0938.2012.00801.x
Westermeyer, H. D., Ward, D. A., & Abrams, K. (2009). Breed predisposition to congenital alacrima in dogs. Vet Ophthalmol, 12(1), 1-5. doi:10.1111/j.1463-5224.2009.00665.x
Williams, D. L. (2008). Immunopathogenesis of keratoconjunctivitis sicca in the dog. Vet Clin North Am Small Anim Pract, 38(2), 251-268, vi. doi:10.1016/j.cvsm.2007.12.002
Williams, D. L., & Tighe, A. A. (2018). Immunohistochemical evaluation of lymphocyte populations in the nictitans glands of normal dogs and dogs with keratoconjunctivitis sicca. Open Vet J, 8(1), 47-52. doi:10.4314/ovj.v8i1.8
Wood, J. A., Chung, D. J., Park, S. A., Zwingenberger, A. L., Reilly, C. M., Ly, I., . . . Murphy, C. J. (2012). Periocular and intra-articular injection of canine adipose-derived mesenchymal stem cells: an in vivo imaging and migration study. J Ocul Pharmacol Ther, 28(3), 307-317. doi:10.1089/jop.2011.0166
Xu, C., Yu, P., Han, X., Du, L., Gan, J., Wang, Y., & Shi, Y. (2014). TGF-β Promotes Immune Responses in the Presence of Mesenchymal Stem Cells. The Journal of Immunology, 192(1), 103-109. doi:10.4049/jimmunol.1302164
Yanez, R., Oviedo, A., Aldea, M., Bueren, J. A., & Lamana, M. L. (2010). Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res, 316(19), 3109-3123. doi:10.1016/j.yexcr.2010.08.008
Zhang, X., M, V. J., Qu, Y., He, X., Ou, S., Bu, J., . . . Li, W. (2017). Dry Eye Management: Targeting the Ocular Surface Microenvironment. Int J Mol Sci, 18(7). doi:10.3390/ijms18071398
Zhu, H., Mitsuhashi, N., Klein, A., Barsky, L. W., Weinberg, K., Barr, M. L., . . . Wu, G. D. (2006). The Role of the Hyaluronan Receptor CD44 in Mesenchymal Stem Cell Migration in the Extracellular Matrix. Stem Cells, 24(4), 928-935. doi:10.1634/stemcells.2005-0186
Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., . . . Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 13(12), 4279-4295. doi:10.1091/mbc.e02-02-0105
Zulim, L., Nai, G. A., Giuffrida, R., Pereira, C. S. G., Benguella, H., Cruz, A. G., . . . Andrade, S. F. (2018). Comparison of the efficacy of 0.03% tacrolimus eye drops diluted in olive oil and linseed oil for the treatment of keratoconjunctivitis sicca in dogs. Arq Bras Oftalmol, 81(4), 293-301. doi:10.5935/0004-2749.20180059
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top