跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 02:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧奕誠
研究生(外文):Yi-Cheng Lu
論文名稱:以脈衝雷射蒸鍍法於氧化鋅薄膜上成長氧化錳鋅薄膜
論文名稱(外文):Pulsed Laser Deposition of MnZnO Thin Film on ZnO Films
指導教授:洪魏寬
口試委員:黃智賢林泰源王耀德
口試日期:2010-07-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:脈衝雷射蒸鍍氧化鋅氧化錳鋅
外文關鍵詞:PLDZnOMnZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩個部分,第一部分是使用脈衝雷射蒸鍍法於C面sapphire基板上蒸鍍MnxZn1-xO (0.04≦x≦0.2)薄膜,實驗中使用的靶材為自製靶材,依實驗目的調配不同成分,並觀察改變鍍膜壓力與溫度參數對MnxZn1-xO薄膜結構與光學特性的影響。利用掃描式電子顯微鏡(scanning electron microscope,SEM )與原子力顯微鏡(atomic force microscopy,AFM)觀察表面形象與粗糙度。以X光繞射儀( X-ray diffraction,XRD )觀察成長方向並利用穿透光譜定義吸收光譜以得到MnxZn1-xO薄膜能隙。
第二部分是使用脈衝雷射蒸鍍法,在C面sapphire基板上先蒸鍍氧化鋅薄膜,再於氧化鋅緩衝層上成長MnxZn1-xO (0.02≦x≦0.2)薄膜。透過SEM與AFM觀察Mn濃度與薄膜粗糙度的關係。從XRD發現只有(0002)繞射峰出現,表示MnxZn1-xO具有良好的方向性與結晶性,且峰值隨著Mn濃度增加而往小角度方向移動,代表晶格常數變大。由常溫下的光激螢光光譜(photoluminescence,PL)量測發現當Mn濃度增加可使進能帶區之紫外發光(UV luminescence) 峰值產生藍移,而半高寬(full width at half maximum,FWHM)也因摻雜而變寬。此外,本實驗能夠透過改變Mn的含量值來控制發光能隙,且能在常溫下發光。


MnxZn1-xO has become an attractive material because of it’s ferromagnetic and optoelectronic properties. Here we demonstrate that MnZnO thin film can be synthesized via pulsed laser deposition (PLD) method and investigate it’s structural and optoelectronic properties.
The thesis consists of two parts. In the first part, the MnxZn1-xO (0.02≦x≦0.2) thin film was grown on c-plane sapphire substrate by PLD method directly. Measurements include scanning electron microscope (SEM), X-ray diffraction (XRD), optical transmission spectra, and atomic force microscopy (AFM).
In the second part, in attempt to improve crystalline properties of MnZnO, the ZnO thin film was grown on c-plane sapphire substrate before the growth of MnZnO. The SEM images reveal the thin film structure become rougher when x increase. The XRD shows that only (0002) peak exists and the peak moves to lower angle( lattice constants become larger) . The room-temperature photoluminescence (RTPL spectrum) showed that ultraviolet luminescence peak has blueshift with the increasing Mn composition, and full width at half maximum (FWHM) of PL spectrum became wider. Besides, this thesis showed the bandgap of MnZnO can be controlled with Mn composition and the RTPL of MnZnO was observed.


摘要....................................................................................................................................i

ABSTRACT......................................................................................................................ii

誌謝……………………………………………………………………………………..iv

目錄...................................................................................................................................v

表目錄............................................................................................................................viii

圖目錄..............................................................................................................................ix

第一章 緒論...................................................................................................................1

1.1 前言....................................................................................................................1
1.2 文獻回顧............................................................................................................1
1.2.1 氧化鋅光學特性.....................................................................................1
1.2.3 氧化錳鋅薄膜.......................................................................................3
1.3 研究動機............................................................................................................3

第二章 材料簡介與製程方法原理...............................................................................9

2.1 實驗材料介紹....................................................................................................9
2.1.1 氧化鋅(Zinc Oxide, ZnO)結構與特性...................................................9
2.1.2 氧化錳鋅(MnZnO)結構與特性..............................................................9
2.2 Sapphire之結構與特性.................................................................................10
2.3 成長合金薄膜的方法......................................................................................10
第三章 實驗架構與分析儀器...................................................................................15

3.1 脈衝雷射蒸鍍(Pulsed Laser Deposition, PLD) ...........................................15
3.1.1 脈衝雷射沉積機制[3.2] .........................................................................16
3.1.2 雷射光源..............................................................................................16
3.1.3 光學鏡片組...........................................................................................17
3.1.4 真空腔體系統.......................................................................................18
3.2 實驗配置與設備.............................................................................................19
3.2.1 製作靶材...............................................................................................19
3.2.2 準備基板與清洗..................................................................................20
3.2.3 脈衝雷射蒸鍍步驟..............................................................................20
3.3 量測儀器原理介紹與方法............................................................................22
3.3.1 掃描式電子顯微鏡..............................................................................22
3.3.2 能量散佈光譜儀..................................................................................23
3.3.3 X光繞射儀.........................................................................................23
3.3.4 原子力顯微鏡.......................................................................................25
3.3.5 光激發光光譜儀...................................................................................26
3.3.6 穿透光譜........................................................................................28

第四章 實驗結果與討論...............................................................................................37

4.1 靶材分析..........................................................................................................37
4.2 改變靶材比例成長氧化錳鋅薄膜..................................................................37
4.2.1 SEM、AFM及EDS分析.....................................................................38
4.2.2 X-ray繞射分析....................................................................................38
4.2.3 MnxZn1-xO薄膜實際之x值.................................................................38
4.2.4 穿透光譜分析.....................................................................................39
4.2.5 總結.....................................................................................................40
4.3 改變溫度成長氧化錳鋅薄膜..........................................................................42
4.3.1 SEM與AFM分析................................................................................42
4.3.2 X-ray繞射分析....................................................................................42
4.3.3 MnxZn1-xO薄膜實際之x值.................................................................43
4.3.4 MnxZn1-xO薄膜之光學能隙...............................................................43
4.3.5 總結.......................................... ..........................................................43
4.4 改變壓力成長氧化錳鋅薄膜..........................................................................45
4.4.1 SEM與AFM分析................................................................................45
4.4.2 X-ray繞射分析....................................................................................45
4.4.3 MnxZn1-xO薄膜實際之x值.................................................................46
4.4.4 MnxZn1-xO薄膜之光學能隙...............................................................46
4.4.5 總結.....................................................................................................46
4.5 在氧化鋅薄膜上成長氧化錳鋅薄膜..............................................................47
4.5.1 SEM與AFM分析................................................................................47
4.5.2 X-ray繞射分析....................................................................................48
4.5.3 MnxZn1-xO薄膜實際之x值.................................................................48
4.5.4 MnxZn1-xO薄膜之光學能隙...............................................................48
4.5.5 PL光譜分析.........................................................................................49
4.5.6 總結.....................................................................................................49

第五章 結論...................................................................................................................72

參考文獻.........................................................................................................................73


[1.1]Aleksandra B. Djurisˇic, Yu Hang Leung, small, 2, No.8-9, 944-961 (2006)
[1.2]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kreigseis, D. Forster,F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak,U. Haboeck, A. V. Rodina, Phys. Stat. Sol. B, 241,231 (2004)
[1.3]A. Teke, S. Dog˘an, X. Gu, H. MorkoA, B. Nemeth, J.Nause, H. O. Everitt, Phys.
Rev. B, 70, 195207 (2004)
[1.4]J. Gutowski, N. Presser, I. Broser, Phys. Rev. B, 38, 9746 (1988)
[1.5]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kreigseis, D. Forster,F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak,U. Haboeck, A. V. Rodina, Phys. Stat. Sol. B, 241,231 (2004)
[1.6]M. Strassburg, A. Rodina, M. Dworzak, U. Haboeck, I. L. Krestnikov,A.
Hoffmann, O. Gelhausen, M. R. Phillips, H. R. Alves,A. Zeuner, D. M. Hofmann,
B. K. Meyer, Phys. Stat. Sol. B, 241, 607 (2004)
[1.7]L. Wang, N. C. Giles, J. Appl. Phys., 94, 973 (2003)
[1.8]H.C. Hsu, W.F. Hsieh, Solid State Commun., 131, 371 (2004)
[1.9]X. Liu, X. Wu, H. Cao, R. P. H. Chang, J. Appl. Phys., 95,3141 (2004)
[1.10]R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, Appl. Phys. Lett., 88,
023111 (2006)
[1.11]J. S. Jie, G. Z. Wang, X. H. Han, Q. X. Yu, Y. Liao, G. P. Li, J. G.Hou, Chem. Phys. Lett., 387, 466 (2004)
[1.12]T. Fukumura, J. Zhengwu, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75, 3366(1999)
[1.13]A. Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, J. Narayan, Solid State Commun. 121, 371(2002)

[1.14]M. Nakayama, H. Tanaka, K. Masuko, T. Fukushima, A. Ashida,
and N. Fujimura, Appl. Phys. Lett. 88, 241908 (2006)
[1.15]V. E. Kaydashev, E. M. Kaidashev, M. Peres, T. Monteiro, M. R. Correia, N. A. Sobolev, L. C. Alves, N. Franco, and E. Alves, Appl. Phys. Lett. 106, 093501 (2009)
[2.1]普傳貴、斐立宅、俞海雲,一維無機納米材料,北京:冶金工業出版社,2007。
[2.2]U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin,
S.-J. Cho, and H. Morkoc, JOURNAL OF APPLIED PHYSICS, 98, 041301, pp. 3-4 (2005)
[2.3]B. Meyer and Dominik Marx, PHYSICAL REVIEW B, 67, 035403, 2003.
[2.4]YONG XU AND MARTIN A.A. SCHOONEN, American Mineralogist,
85:543–556(2000)
[2.5]A.K.M. Farid UI Islam, R. Islam, K.A. Khan, Renewable Energy 30,2289-2302 (2005)
[2.6]S. W. Jung, S.-J. An, Gyu-Chul Yi, C. U. Jung, Sung-lk Lee, and Sunglae Cho, Appl. Phys. Lett., 80, 24 (2002)
[2.7]V. Avrutin, N. Izyumskaya, U. Ozgur, A.El-Shaer, H. Lee, W. Schoch, F. Reuss, V.G. Beshenkov, A.N. Pustovit, A. Che Mofor, A. Bakin, H. Morkoc, and A. Waag, Superlattice and Microstructures 39, 291-298 (2006)
[2.8]M. Mollar, M. Tortosa, R. Casasus, and B. Mari, Microelectronics Journal, 40, 276-279 (2009)
[2.9]金開聖, "ZnO 發光二極體之薄膜特性分析", 中華技術學院電子工程
研究所碩士論文,(2006)
[2.10] Hong Xiao 著。羅正忠、張鼎張譯。「半導體製造技術導論」。2004年5月
二版。台灣培生教育出版股份有限公司。
[2.11] Jih-Jen.Wu, Sai-Chang. Liu, Adv. Mater., 14, 215 (2002).
[2.12]B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett., 81, 757 (2002).
[2.13]W. I. Park, D. H. Kim, Appl. Phys. Lett., 81, 22 (2002).
[2.14]X. P. Gao, et al, Chem Commum, 1428-1429 (2004).
[2.15]T. Nagase, T. Ooie, Y. Nakatsuka, J. Appl. Phys. Part 2, 39, (7B),
L713-L715 (2002).
[2.16]S. A. Studenikin, N. Golego, J. Appl. Phys., 84, 2287-2293 (1998).
[2.17]Yan Jian-Feng, et al, J. Crystal Growth, 208, 206 (2005).
[2.18]Y. Li, et al, Appl. Phys. Lett., 76, 2001 (2000).
[3.1]丁南宏、蘇青森等著,真空技術與應用,新竹市:國科會精儀中心,
第398-408頁 (2001)
[3.2]黃泳發,利用脈衝雷射濺鍍氧化鋅薄膜之製成與特性研究,碩士論文,交
通大學光電工程研究所,新竹 (2001)
[3.3] William T.Silfvast, Laser Fundamentals Second Edition, New York,
Cambridge University Press, pp. 551 (2004)
[3.4]汪建民, “材料分析”, 中國材料科學學會, 台灣 (1998)
[3.5]B. D. Cullity, Elements of X-ray diffraction, 2nd ed., Addison Wesley,
Canada (1978)
[3.6] R. A. Meyers, Encyclopedia of Analytical Chemistry (John Wiley & Sons Ltd), Chichester (2000)
[4.1]K. Samanta, S. Dussan, and R.S. Katiyar, Appl. Phys. Lett., 90, 261903 (2007)
[4.2]E. Chikoidze, Y. Dumont, F. Jomard, D. Ballutaud, P. Galtier, and Gorochov, J. Appl. Phys., 97, 10D327 (2005)
[4.3]A. Che Mofor, A. El-Shaer, A. Bakin, and A. Waag, Appl. Phys. Lett., 87, 062501 (2005)
[4.4]Sang Sub Kim, Jong Ha Moon, and Byung-Teak Lee, J. Appl. Phys., 95, 2 (2004)
[4.5]L. Rajamohan Reddy, P. Prathap, Y.P. Venkata Subbaiah, K.T. Ramakrishna Reddy, and J. Yi, Solid State Sciences, 9, 718-721 (2007)
[4.6]J. Bardeen, F.J. Slatt, L.J. Hail, Photoconductivity conference, p.146 (1954)
[4.7]Y. Ohhata, F Shinoki, S. Yoshida, Thin Solid Films 59, 225 (1979)
[4.8]K. Masuko, A. Ashida, T. Yoshimura, and N. Fujimura, J. Appl. Phys., 103, 043714 (2008)
[4.9]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys., 79, 7983 (1996)
[4.10]A.V. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B, 104, 1715 (2000)
[4.11]B Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79, 943 (2001)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top