跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂家欣
研究生(外文):LU,CHIA-HSIN
論文名稱:探討AZ31鎂合金微弧氧化層表面結構對披覆鎳磷金屬層特性之影響
論文名稱(外文):Effect of Micro-arc Oxidized Layer Structure on the Characteristics of Electroless Nickel-Phosphorus Plating for Magnesium Alloy AZ31
指導教授:林明憲林明憲引用關係葛明德葛明德引用關係
指導教授(外文):LIN,MING-HSIENGER,MING-DER
口試委員:簡順億李弘彬林招松
口試委員(外文):JIAN,SHUN-YILEE,HUNG-BINLIN,CHAO-SUNG
口試日期:2019-07-04
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:215
中文關鍵詞:微弧氧化鎂鋁合金化學鍍鎳磷耐蝕性附著力腐蝕機制
外文關鍵詞:micro-arc oxidationmagnesium alloyelectroless Ni-Pcorrosion resistanceadhesioncorrosion mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
長期以來鎂及其合金被認為是一種電子應用的良好材料,由於其有最低的金屬密度及較高的比強度,已被用於各工程領域。雖然鎂合金有良好的機械性能,但於酸性及鹽水環境下的高腐蝕敏感性使其於許多應用中受到了限制,為了提高鎂合金的抗腐蝕性能,如化成處理、電鍍、有機塗層、陽極氧化及微弧氧化等多種表面處理方法用於改善鎂合金的耐蝕性。
本研究以鎂鋁合金(AZ31)為基材,使用微弧氧化技術,製備一層氧化膜提升其耐蝕性,並且探討不同微弧氧化層之表面形貌對於後續化學鍍鎳磷的影響。實驗中以SEM觀察其表面形貌及橫截面形貌,EDS觀察鍍層化合物分布狀況;以電化學試驗線性極化曲線、電化學阻抗分析(EIS)及鹽霧試驗檢測其鍍層耐蝕性;以三維光學輪廓儀及表面粗度儀量測表面粗糙度;以電腦斷層掃描儀(CT)分析微弧氧化層中孔洞分佈。
首先探討MAO-SP和MAO-S兩種微弧氧化層表面形貌特性及耐蝕性之影響,之後藉由浸泡觸媒墨水,在氧化層上以化學鍍披覆鎳磷金屬層,並探討不同微弧氧化層表面結構對鍍上鎳磷金屬層後之影響。最後綜合實驗結果提出MAO及MAO/Ni-P之腐蝕機制。由實驗結果得知:MAO-S之微弧氧化層表面孔洞大小平均且孔隙率高,其耐蝕性能卓越,在電化學極化試驗中測得腐蝕電流值8.57 x 10-10 A/cm2,進行鹽霧試驗可通過480小時而腐蝕面積僅為0.1%。並且證實觸媒可透過微弧層的孔壁吸附、沉積。在化學鍍鎳磷後之鍍層能得到優異的附著力及耐蝕性,其鎳磷層在交流阻抗試驗長效浸泡960小時後仍無產生電感及無觀察到孔蝕現象,並在鹽霧測試可通過120小時仍無鏽點產生。

Having been regarded as good candidates for electronic applications, magnesium and its alloys, have been used in a variety of fields due to their ability to exhibit the lowest density among metals and high specific strength. In spite of their good mechanical properties, the high corrosion susceptibility of magnesium and its alloys has greatly hindered their widespread applications, especially in acidic environments and in salt-water conditions. In order to improve the anticorrosion performance of Mg alloy, a variety of surface treatment methods such as conversion coating, electroplating, organic coating, anodic oxidation and micro-arc oxidation (MAO) have been applied.
In this study, magnesium alloy AZ31 was used as a substrate. The micro-arc oxidation (MAO) technique was used to produce an oxidation layer having a high corrosion resistance and to improve the corrosion resistance of magnesium alloy. The effect of different micro-arc oxidation on surface morphology of electroless nickel-phosphorus plating was studies. The morphology and the coating thickness were determined by using Scanning Electron Microscopy (SEM). The analysis of coating composition was performed by using Energy Dispersive Spectroscopy (EDS). Moreover, the corrosion behavior of the coated samples was evaluated by Potentiodynamic Polarization Test, Electrochemical Impedence Spectroscopy (EIS) and Salt Spray Test (SST). The surface roughness was analyzed by using 3D optical microscopes and surface measuring instrument. The detailed information of the porosity of MAO coatings was obtained by using Computed Tomography (CT).
Firstly, the effect of MAO-SP and MAO-S on the surface morphology and corrosion resistance of micro-arc oxidation coatings was investigated. Then, the electroless nickel-phosphorus on different surface of MAO coating by immersing the catalyst ink was explored. Finally, the comprehensive experimental results suggested the corrosion mechanism of MAO and MAO/Ni-P.
The results showed that the surface of MAO-S has an average pore size and high porosity, and it was observed to possess better corrosion resistance. In the corrosion resistance test, the electrochemical test was performed at corrosion current 8.57 x 10-10 A/cm2. The salt spray test was carried out through 480 h and the corrosion area was only 0.1%. It was also confirmed that the catalyst could be adsorbed and deposited through the pore walls of the micro-arc layer. It was suggested that an electroless nickel-phosphorus plated coating could improve its corrosion resistance and adhesion, by which the inductive loop at low frequency in EIS plots did not appear and also there was no corrosion pit for 960 h. Then, the electroless Ni-P film can through over than 120 h by the salt spray test.

致謝 ii
摘要 iv
ABSTRACT v
目錄 vii
表目錄 xii
圖目錄 xiv
1.緒論 1
1.1前言 1
1.2研究動機與目的 2
2. 文獻回顧與理論基礎 3
2.1鎂合金的特性與分類 3
2.1.1鎂合金的性質 3
2.1.2鎂合金的種類 4
2.1.3鎂合金的腐蝕行為 7
2.2鎂合金表面處理技術之介紹 10
2.2.1物理氣相沉積法 11
2.2.2化學氣相沉積法 12
2.2.3電鍍 12
2.2.4化學鍍 12
2.2.5化成處理 13
2.2.6微弧氧化 14
2.3微弧氧化的發展與技術 16
2.3.1微弧氧化發展歷程 16
2.3.2微弧氧化成長機制 17
2.3.3微弧氧化孔洞生成機制 19
2.3.4微弧氧化膜層特性 20
2.4微弧氧化電解液的分類 22
2.4.1矽酸鹽電解液 25
2.4.2磷酸鹽電解液 26
2.4.3矽酸鹽與磷酸鹽混合電解液 27
2.5化學鍍法 31
2.5.1化學鍍鎳基的沿用和發展 32
2.5.2化學鍍鎳磷的反應機構 34
2.6化學鍍製程應用於鎂合金微弧氧化層 35
2.7腐蝕機構原理 38
2.7.1動電位極化曲線[103, 104] 38
2.7.2微弧氧化層腐蝕機制 40
2.7.3化學鍍鎳磷腐蝕機制 44
3. 實驗方法與分析檢測 47
3.1製程說明 47
3.2實驗流程 47
3.3微弧氧化製程 49
3.3.1試片前處理與電解液的配置 49
3.1.2微弧氧化處理 49
3.4化學鍍鎳磷製程 52
3.4.1試片前處理與鍍液的配置 52
3.4.2化學鍍鎳磷製程 54
3.5微結構分析 54
3.5.1表面形貌觀察與成分分析 54
3.5.2橫截面及厚度觀察 55
3.6耐蝕性分析 58
3.6.1線性極化掃描法 58
3.6.2交流阻抗分析 60
3.6.3鹽霧測試評估 61
3.7表面粗糙度分析 63
3.7.1探針式表面粗度儀 63
3.7.2三維光學輪廓儀 64
3.8附著力分析 65
3.8.1拉力測試 65
3.8.2刮痕試驗 67
3.9接觸角分析 69
3.10斷層掃描分析儀 70
4. 實驗結果 71
4.1不同電解液組成對微弧氧化層結構及性能之影響 71
4.1.1MAO-SP微弧氧化層特性分析 72
4.1.1.1表面形貌與橫截面之觀察 72
4.1.1.2成分組成分析 75
4.1.1.3耐蝕性檢測 77
4.1.2 MAO-S微弧氧化層特性分析 82
4.1.2.1表面形貌與橫截面之觀察 82
4.1.2.2成分組成分析 85
4.1.2.3耐蝕性檢測 87
4.1.3不同電解液組成製備之微弧氧化層差異分析 92
4.1.3.1表面形貌與橫截面之觀察 92
4.1.3.2弧光放電形式分析 94
4.1.3.3氧化層成分分析 95
4.1.3.4耐蝕性分析 96
4.1.3.5附著力分析 99
4.1.3.6表面粗糙度檢測 101
4.1.3.7接觸角量測 106
4.1.4小結 107
4.2微弧氧化層表面結構對披覆鎳磷金屬層之影響 108
4.2.1微弧氧化層表面結構對NIPAAm觸媒披覆之影響 108
4.2.2微弧氧化層披覆鎳磷金屬層特徵分析 110
4.2.2.1表面形貌觀察 110
4.2.2.2橫截面形貌觀察 110
4.2.2.3表面粗糙度分析 112
4.2.3小結 116
4.3不同微弧氧化層結構之MAO/Ni-P複合鍍層性能比較分析 117
4.3.1機械性能分析 117
4.3.1.1拉力測試 117
4.3.1.2刮痕試驗 118
4.3.2耐蝕性分析 122
4.3.2.1線性極化掃描法 122
4.3.2.2交流阻抗分析 123
4.3.2.3鹽霧測試評估 135
4.3.3小結 138
5. 討論 139
5.1微弧氧化層成膜機制探討 139
5.2綜合討論氧化層特性及耐蝕性的關係 142
5.3微弧氧化層腐蝕機制探討 148
5.4鎳磷金屬層腐蝕機制探討 152
5.4.1經長效浸泡EIS檢測後之腐蝕行為 152
5.4.2經鹽霧試驗後之腐蝕行為 157
5.4.3短時間化鍍鎳磷對微弧層之影響 165
5.4.4鎳磷金屬層腐蝕機制 171
6. 結論 174
7. 未來展望 178
參考文獻 180
自傳 193


[1]Sreekanth D. and Rameshbabu N., "Development and characterization of MgO/hydroxyapatite composite coating on AZ31 magnesium alloy by plasma electrolytic oxidation coupled with electrophoretic deposition," Materials Letters, vol. 68, pp. 439-442, 2012.
[2]Deng Y. et al., "Corrosion behaviour and mechanism of new aerospace Al-Zn-Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1− x nanoparticles," Corrosion Science, vol. 90, pp. 359-374, 2015.
[3]Chino Y. et al., "Blow forming of Mg alloy recycled by solid-state recycling," Materials transactions, vol. 45, no. 2, pp. 361-364, 2004.
[4]Tao Y., Zheng M.-Y., Hu X.-S., and Kun W., "Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP," Transactions of Nonferrous Metals Society of China, vol. 20, pp. s604-s607, 2010.
[5]Takuda H., Yoshii T., and Hatta N., "Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet," Journal of Materials Processing Technology, vol. 89, pp. 135-140, 1999.
[6]Song G. and Atrens A., "Understanding magnesium corrosion—a framework for improved alloy performance," Advanced engineering materials, vol. 5, no. 12, pp. 837-858, 2003.
[7]Gray J. and Luan B., "Protective coatings on magnesium and its alloys—a critical review," Journal of alloys and compounds, vol. 336, no. 1-2, pp. 88-113, 2002.
[8]Hollstein F., Wiedemann R., and Scholz J., "Characteristics of PVD-coatings on AZ31hp magnesium alloys," Surface and coatings Technology, vol. 162, no. 2-3, pp. 261-268, 2003.
[9]Tsubakino H., Yamamoto A., Fukumoto S., Watanabe A., Sugahara K., and Inoue H., "High-purity magnesium coating on magnesium alloys by vapor deposition technique for improving corrosion resistance," Materials Transactions, vol. 44, no. 4, pp. 504-510, 2003.
[10]Chong K. Z. and Shih T. S., "Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution," Materials Chemistry and Physics, vol. 80, no. 1, pp. 191-200, 2003.
[11]Zhang Y. and Yan C., "Development of anodic film on Mg alloy AZ91D," Surface and Coatings Technology, vol. 201, no. 6, pp. 2381-2386, 2006.
[12]Jian S.-Y. et al., "Correlation between Electric Parameters and Microstructural Properties of LZ91 Mg Alloy Coated by Micro Arc Oxidation," Int. J. Electrochem. Sci, vol. 13, pp. 5709-5722, 2018.
[13]Shu X. et al., "Recent progress in electroless Ni coatings for magnesium alloys," Int J Electrochem Sci, vol. 10, pp. 1261-1273, 2015.
[14]Wu L.-p., Zhao J.-j., Xie Y.-p., and Yang Z.-D., "Progress of electroplating and electroless plating on magnesium alloy," Transactions of Nonferrous Metals Society of China, vol. 20, pp. s630-s637, 2010.
[15]Duan H., Du K., Yan C., and Wang F., "Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D," Electrochimica Acta, vol. 51, no. 14, pp. 2898-2908, 2006.
[16]Zhang X., Zhao Z., Wu F., Wang Y., and Wu J., "Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution," Journal of Materials Science, vol. 42, no. 20, pp. 8523-8528, 2007.
[17]White L., Koo Y., Neralla S., Sankar J., and Yun Y., "Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)," Materials Science and Engineering: B, vol. 208, pp. 39-46, 2016.
[18]Lu X. et al., "Plasma electrolytic oxidation coatings with particle additions – A review," Surface and Coatings Technology, vol. 307, pp. 1165-1182, 2016.
[19]Liu Z. and Gao W., "A novel process of electroless Ni-P plating with plasma electrolytic oxidation pretreatment," Applied Surface Science, vol. 253, no. 5, pp. 2988-2991, 2006.
[20]Chen M., Cheng N., Li J., and Liu S., "Improvement to corrosion resistance of Ni-P coating on MAO magnesium alloy by BTESPT," Surface Engineering, vol. 28, no. 7, pp. 491-497, 2012.
[21]Chen M.-a., Cheng N., Ou Y.-c., and Li J.-m., "Corrosion performance of electroless Ni-P on polymer coating of MAO coated AZ31 magnesium alloy," Surface and Coatings Technology, vol. 232, pp. 726-733, 2013.
[22]Fan X., Wang Y., Zou B., Gu L., Huang W., and Cao X., "Preparation and corrosion resistance of MAO/Ni-P composite coat on Mg alloy," Applied Surface Science, vol. 277, pp. 272-280, 2013.
[23]Mordike B. and Ebert T., "Magnesium: Properties—applications—potential," Materials Science and Engineering: A, vol. 302, no. 1, pp. 37-45, 2001.
[24]Afrin N., Chen D., Cao X., and Jahazi M., "Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy," Materials Science and Engineering: A, vol. 472, no. 1-2, pp. 179-186, 2008.
[25]Avedesian M. M. and Baker H., ASM specialty handbook: magnesium and magnesium alloys. ASM international, 1999.
[26]戴光勇, 鎂合金表面處理技術(下), 材料與社會, 1989.
[27]Vermilyea D. A. and Kirk C. F., "Studies of inhibition of magnesium corrosion," Journal of The Electrochemical Society, vol. 116, no. 11, pp. 1487-1492, 1969.
[28]Nordlien J. H., Ono S., Masuko N., and Nis K., "Morphology and structure of oxide films formed on magnesium by exposure to air and water," Journal of the Electrochemical Society, vol. 142, no. 10, pp. 3320-3322, 1995.
[29]Song G. L. and Atrens A., "Corrosion mechanisms of magnesium alloys," Advanced engineering materials, vol. 1, no. 1, pp. 11-33, 1999.
[30]Pourbaix M., "Atlas of electrochemical equilibria in aqueous solution," NACE, vol. 307, 1974.
[31]Wirtz G. P., Brown S. D., and Kriven W., "Ceramic coatings by anodic spark deposition," Material and Manufacturing Process, vol. 6, no. 1, pp. 87-115, 1991.
[32]Bard A. J., Faulkner L. R., Leddy J., and Zoski C. G., Electrochemical methods: fundamentals and applications. wiley New York, 1980.
[33]Hussein R. O., "Plasma Process Control for Improved PEO Coatings on Magnesium Alloys," Electronic Theses and Dissertations, University of Windsor, Canada, 2015.
[34]何鎮揚、葉明倉, "物理氣相沈積法(Physical Vapor Deposition, PVD)," 國科會高瞻自然科學教學資源平台, 2007.
[35]Wu G., Zeng X., Ding W., Guo X., and Yao S., "Characterization of ceramic PVD thin films on AZ31 magnesium alloys," Applied Surface Science, vol. 252, no. 20, pp. 7422-7429, 2006.
[36]張育唐、陳藹然, "化學氣相沉積法(Chemical Vapor Deposition)," 國科會高瞻自然科學教學資源平台, 2011.
[37]Christoglou C., Voudouris N., Angelopoulos G., Pant M., and Dahl W., "Deposition of aluminium on magnesium by a CVD process," Surface and Coatings Technology, vol. 184, no. 2-3, pp. 149-155, 2004.
[38]Yang H., Guo X., Chen X., and Birbilis N., "A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D," Corrosion Science, vol. 79, pp. 41-49, 2014.
[39]Zhang J. et al., "Electroless deposition and characterization of a double-layered Ni-B/Ni-P coating on AZ91D Mg alloy from eco-friendly fluoride-free baths," Surface and Coatings Technology, vol. 342, pp. 178-189, 2018.
[40]李偉任, "AZ31 鎂合金硝酸鈰化成皮膜結構與性質研究," 臺灣大學材料科學與工程學研究所學位論文, pp. 1-161, 2008.
[41]Lee S.-J., Do L.-H.-T., Lee J. L., Chen C.-Y., and Peng H.-C., "Effects of Pulsed Unipolar and Bipolar Current Regimes on the Characteristics of Micro-Arc Oxidation Coating on LZ91 Magnesium-Lithium Alloy," International Journal of Electrochemical Science, vol. 13, no. 3, pp. 2705-2717, 2018.
[42]崔學軍, "微弧氧化技術及其在鎂合金腐蝕防護領域的研究進展," 中國腐蝕與防護學報, 2018.
[43]Sluginov N P R. J., "Electric discharges in water," Phys. Chem. Soc., 1880.
[44]Dunstan B. G. and Mcarthur S. J., "Process of protecting surfaces of aluminum or aluminum alloys," ed: US Patent 1,771,910, 1930.
[45]Jean F., "Protecting magnesium and its alloys," ed: US Patent 2,196,161, 1940.
[46]Güntherschulze A. and Betz H., "Neue Untersuchungen über die elektrolytische Ventilwirkung," Zeitschrift für Physik, vol. 73, no. 9-10, pp. 586-601, 1932.
[47]Buzzard R. W., "Method of producing corrosion resistant coatings on magnesium," ed: US Patent 2,261,960, 1941.
[48]Buzzard R. W., "Bath for and electrolytic treatment of magnesium and magnesium alloys," ed: US Patent 2,414,090, 1947.
[49]Rakoch A. and Bardin I., "Microarc oxidation of light alloys," Metallurgist, vol. 54, no. 5, pp. 378-383, 2010.
[50]Rakoch A., Bardin I., Kovalev V., and Avanesyan T., "Microarc oxidation of light constructional alloys: Part 1. Main notions on the microarc oxidation of light constructional alloys," Russian Journal of Non-Ferrous Metals, vol. 54, no. 4, pp. 341-344, 2013.
[51]McNeill W., "The preparation of cadmium niobate by an anodic spark reaction," Journal of the electrochemical Society, vol. 105, no. 9, pp. 544-547, 1958.
[52]Gruss L. L. and McNeil W., "Anodic spark reaction products in aluminate, tungstate and silicate solutions," Electrochem. Technol, vol. 1, no. 9-10, pp. 283-287, 1963.
[53]McNeill W. and Gruss L. L., "Anodic film growth by anion deposition in aluminate, tungstate, and phosphate solutions," Journal of The Electrochemical Society, vol. 110, no. 8, pp. 853-855, 1963.
[54]McNeill W., "The Cr-22 coating for magnesium," Metal Finishing, vol. 53, no. 12, pp. 57-59, 1955.
[55]Dow C., "Bath for and method of producing a corrosion resistant coating upon light metals," GB Pat, vol. 762195, no. 1956.11, p. 28, 1956.
[56]Evangelides H. A., "Method of electrolytically coating magnesium and electrolyte therefor," ed: Google Patents, 1955.
[57]Brown S., Kuna K., and Van T. B., "Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3," Journal of the American Ceramic Society, vol. 54, no. 8, pp. 384-390, 1971.
[58]Van T. B., Brown S. D., and Wirtz G. P., "Mechanism of anodic spark deposition," Am. Ceram. Soc. Bull.;(United States), vol. 56, no. 6, 1977.
[59]Nikolaev A. and Markov G., "New phenomenon in electrolysis," Izv. Sibir. Otd. Akad. Nauk SSSR, no. 5, p. 12, 1977.
[60]Krysmann W., Kurze P., Dittrich K. H., and Schneider H., "Process characteristics and parameters of anodic oxidation by spark discharge (ANOF)," Crystal Research and Technology, vol. 19, no. 7, pp. 973-979, 1984.
[61]Markov G., Gizatullin B., and Rychazhkova I., "Method of electrolytic deposition of silicate coatings. Publish," Bull. Inv, vol. 17, 1982.
[62]Kurze P., Krysmann W., Schreckenbach J., Schwarz T., and Rabending K., "Coloured ANOF layers on aluminium," Crystal Research and Technology, vol. 22, no. 1, pp. 53-58, 1987.
[63]Yamada M. and Mita I., "Formation of eta alumina by anodic oxidation of aluminum," Chemistry Letters, vol. 11, no. 5, pp. 759-762, 1982.
[64]Lv G. et al., "Characteristic of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte," Applied Surface Science, vol. 253, no. 5, pp. 2947-2952, 2006.
[65]Chang L., "Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation," Journal of Alloys and Compounds, vol. 468, no. 1-2, pp. 462-465, 2009.
[66]Aliasghari S., Němcová A., Čížek J., Gholinia A., Skeldon P., and Thompson G., "Effects of reagent purity on plasma electrolytic oxidation of titanium in an aluminate-phosphate electrolyte," Transactions of the IMF, vol. 94, no. 1, pp. 32-42, 2016.
[67]Zhang X. et al., "X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings," ACS Appl Mater Interfaces, vol. 8, no. 13, pp. 8801-10, Apr 6 2016.
[68]Sabaghi Joni M. and Fattah-alhosseini A., "Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy," Journal of Alloys and Compounds, vol. 661, pp. 237-244, 2016.
[69]Němcová A., Skeldon P., Thompson G. E., and Pacal B., "Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy," Surface and Coatings Technology, vol. 232, pp. 827-838, 2013.
[70]陳家昇, "LZ91 與 AZ31 鎂合金微弧氧化製程與耐腐蝕性質研究," 臺灣大學材料科學與工程學研究所學位論文, pp. 1-155, 2015.
[71]Yerokhin A., Nie X., Leyland A., Matthews A., and Dowey S., "Plasma electrolysis for surface engineering," Surface and coatings technology, vol. 122, no. 2-3, pp. 73-93, 1999.
[72]Ghasemi A., Raja V. S., Blawert C., Dietzel W., and Kainer K. U., "The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings," Surface and Coatings Technology, vol. 204, no. 9-10, pp. 1469-1478, 2010.
[73]Ko Y. G., Namgung S., and Shin D. H., "Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation," Surface and Coatings Technology, vol. 205, no. 7, pp. 2525-2531, 2010.
[74]Bala Srinivasan P., Blawert C., Störmer M., and Dietzel W., "Characterisation of tribological and corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy," Surface Engineering, vol. 26, no. 5, pp. 340-346, 2010.
[75]Chen H. et al., "Corrosion performance of plasma electrolytic oxidized AZ31 magnesium alloy in silicate solutions with different additives," Surface and Coatings Technology, vol. 205, pp. S32-S35, 2010.
[76]Zhang R. F., Zhang S. F., Xiang J. H., Zhang L. H., Zhang Y. Q., and Guo S. B., "Influence of sodium silicate concentration on properties of micro arc oxidation coatings formed on AZ91HP magnesium alloys," Surface and Coatings Technology, vol. 206, no. 24, pp. 5072-5079, 2012.
[77]Yang W., Xu D., Yao X., Wang J., and Chen J., "Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy," Journal of Alloys and Compounds, vol. 745, pp. 609-616, 2018.
[78]Li Z. et al., "Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy," Surface and Coatings Technology, vol. 357, pp. 515-525, 2019.
[79]Barchiche C. E., Rocca E., Juers C., Hazan J., and Steinmetz J., "Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods," Electrochimica Acta, vol. 53, no. 2, pp. 417-425, 2007.
[80]Mori Y., Koshi A., Liao J., Asoh H., and Ono S., "Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate – Silicate mixture electrolytes," Corrosion Science, vol. 88, pp. 254-262, 2014.
[81]Yao Z., Xia Q., Wei H., Li D., Sun Q., and Jiang Z., "Study on coating growth characteristics during the electrolytic oxidation of a magnesium–lithium alloy by optical emission spectroscopy analysis," RSC Advances, vol. 5, no. 84, pp. 68806-68814, 2015.
[82]Luo H. et al., "Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy," Journal of Alloys and Compounds, vol. 464, no. 1-2, pp. 537-543, 2008.
[83]Ma H. et al., "An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy," Surface and Coatings Technology, vol. 266, pp. 151-159, 2015.
[84]Shi L., Xu Y., Li K., Yao Z., and Wu S., "Effect of additives on structure and corrosion resistance of ceramic coatings on Mg-Li alloy by micro-arc oxidation," Current Applied Physics, vol. 10, no. 3, pp. 719-723, 2010.
[85]Phuong N. V., Fazal B. R., and Moon S., "Cerium- and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy," Surface and Coatings Technology, vol. 309, pp. 86-95, 2017.
[86]傅淳貴, "添加劑對高抗蝕鎂鋁合金之耐蝕性影響," 國防大學理工學院化學工程碩士班碩士學位論文, pp. 1-115, 2018.
[87]Brenner A. and Riddell G. E., "Deposition of nickel and cobalt by chemical reduction," J. Res. Nat. Bur. Stand, vol. 39, pp. 385-395, 1947.
[88]Chen X., Yang H., Abbott T., Easton M., and Birbilis N., "Corrosion-resistant electrochemical platings on magnesium alloys: a state-of-the-art review," Corrosion, vol. 68, no. 6, pp. 518-535, 2012.
[89]Zhang W., He J., Jiang Z., Jiang Q., and Lian J., "Electroless Ni-P layer with a chromium-free pretreatment on AZ91D magnesium alloy," Surface and Coatings Technology, vol. 201, no. 8, pp. 4594-4600, 2007.
[90]Zhao H., Huang Z., and Cui J., "A new method for electroless Ni-P plating on AZ31 magnesium alloy," Surface and Coatings Technology, vol. 202, no. 1, pp. 133-139, 2007.
[91]Huo H., Li Y., and Wang F., "Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer," Corrosion science, vol. 46, no. 6, pp. 1467-1477, 2004.
[92]Song Y., Shan D., and Han E., "Comparative study on corrosion protection properties of electroless Ni‐P‐ZrO2 and Ni‐P coatings on AZ91D magnesium alloy," Materials and Corrosion, vol. 58, no. 7, pp. 506-510, 2007.
[93]Jin J., Liu C., Fu S., Gao Y., and Shu X., "Electroless Ni-P plating on Mg-10Gd-4.8 Y-0.6 Zr magnesium alloy with a new pretreatment process," Surface and Coatings Technology, vol. 206, no. 2-3, pp. 348-353, 2011.
[94]Song Y., Shan D., and Han E., "High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys," Electrochimica Acta, vol. 53, no. 5, pp. 2135-2143, 2008.
[95]Zhang W., Jiang Z., Li G., Jiang Q., and Lian J., "Electroless Ni-Sn-P coating on AZ91D magnesium alloy and its corrosion resistance," Surface and Coatings Technology, vol. 202, no. 12, pp. 2570-2576, 2008.
[96]Yang L., Li J., Zheng Y., Jiang W., and Zhang M., "Electroless Ni-P plating with molybdate pretreatment on Mg-8Li alloy," Journal of Alloys and Compounds, vol. 467, no. 1-2, pp. 562-566, 2009.
[97]Sudagar J., Lian J., Liang Y., and Liu J., "Electroless Ni-P deposition with vanadium based coating as pretreatment on AZ91D magnesium alloy," Transactions of the IMF, vol. 90, no. 3, pp. 129-136, 2012.
[98]Seifzadeh D. and Rajabalizadeh Z., "Environmentally-friendly method for electroless Ni-P plating on magnesium alloy," Surface and Coatings Technology, vol. 218, pp. 119-126, 2013.
[99]Sun S., Liu J., Yan C., and Wang F., "A novel process for electroless nickel plating on anodized magnesium alloy," Applied Surface Science, vol. 254, no. 16, pp. 5016-5022, 2008.
[100]Zeng L., Yang S., Zhang W., Guo Y., and Yan C., "Preparation and characterization of a double-layer coating on magnesium alloy AZ91D," Electrochimica Acta, vol. 55, no. 9, pp. 3376-3383, 2010.
[101]Song Z., Xie Z., Yu G., Hu B., He X., and Zhang X., "A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy," Journal of Alloys and Compounds, vol. 623, pp. 274-281, 2015.
[102]Jian S.-Y., Lee J.-L., Lee H.-B., Sheu H.-H., Ou C.-Y., and Ger M.-D., "Influence of electroless plating on the deterioration of the corrosion resistance of MAO coated AZ31B magnesium alloy," Journal of the Taiwan Institute of Chemical Engineers, vol. 68, pp. 496-505, 2016.
[103]Zhan X., Shang W., Wen Y., Li Y., and Ma M., "Preparation and corrosion resistance of a three-layer composite coatings on the Mg alloy," Journal of Alloys and Compounds, vol. 774, pp. 522-531, 2019.
[104]田福助, 電化學: 原理與應用. 高立出版, 2000.
[105]胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
[106]Song G.-L. and Shi Z., "Corrosion mechanism and evaluation of anodized magnesium alloys," Corrosion Science, vol. 85, pp. 126-140, 2014.
[107]Liang J., Srinivasan P. B., Blawert C., Störmer M., and Dietzel W., "Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes," Electrochimica Acta, vol. 54, no. 14, pp. 3842-3850, 2009.
[108]Sun C., Li J., Shuang S., Zeng H., and Luo J.-L., "Effect of defect on corrosion behavior of electroless Ni-P coating in CO2-saturated NaCl solution," Corrosion Science, vol. 134, pp. 23-37, 2018.
[109]"CNS經濟部鹽霧規範," 2002.
[110]Odén M., Ericsson C., Håkansson G., and Ljungcrantz H., "Microstructure and mechanical behavior of arc-evaporated Cr-N coatings," Surface and Coatings Technology, vol. 114, no. 1, pp. 39-51, 1999.
[111]Birss V., Xia S., Yue R., and Rateick R. G., "Characterization of oxide films formed on Mg-based WE43 alloy using AC/DC anodization in silicate solutions," Journal of The Electrochemical Society, vol. 151, no. 1, pp. B1-B10, 2004.
[112]Duan H., Yan C., and Wang F., "Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D," Electrochimica Acta, vol. 52, no. 11, pp. 3785-3793, 2007.
[113]Wang L., Chen L., Yan Z., Wang H., and Peng J., "Effect of potassium fluoride on structure and corrosion resistance of plasma electrolytic oxidation films formed on AZ31 magnesium alloy," Journal of Alloys and Compounds, vol. 480, no. 2, pp. 469-474, 2009.
[114]Liang J., Srinivasan P. B., Blawert C., and Dietzel W., "Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy," Electrochimica Acta, vol. 55, no. 22, pp. 6802-6811, 2010.
[115]Toorani M., Aliofkhazraei M., Golabadi M., and Rouhaghdam A. S., "Effect of lanthanum nitrate on the microstructure and electrochemical behavior of PEO coatings on AZ31 Mg alloy," Journal of Alloys and Compounds, vol. 719, pp. 242-255, 2017.
[116]Lee K. M., Shin K. R., Namgung S., Yoo B., and Shin D. H., "Electrochemical response of ZrO2-incorporated oxide layer on AZ91 Mg alloy processed by plasma electrolytic oxidation," Surface and Coatings Technology, vol. 205, no. 13-14, pp. 3779-3784, 2011.
[117]Montemor M., Pinto R., and Ferreira M., "Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles," Electrochimica Acta, vol. 54, no. 22, pp. 5179-5189, 2009.
[118]Song Y. W., Shan D. Y., and Han E. H., "Corrosion behaviors of electroless plating Ni-P coatings deposited on magnesium alloys in artificial sweat solution," Electrochimica Acta, vol. 53, no. 4, pp. 2009-2015, 2007.
[119]陳麒安, "不同觸媒對鎂合金微弧氧化層披覆鎳磷合金之特性研究," 國防大學理工學院化學工程碩士班碩士學位論文, 2017.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊