跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃馨儀
研究生(外文):Shin-yi Huang
論文名稱:感應耦合電漿質譜儀於嬰兒食品中多重微量元素分析與碘及溴物種型態分析之應用
論文名稱(外文):Determination of Trace Multi-element and The Specitaiton Analysis of Iodine and Bromine in infant food Using ICP-MS
指導教授:江旭禎江旭禎引用關係
指導教授(外文):Shiuh-jen Jiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:107
中文關鍵詞:碘物種嬰兒食品溴物種多重微量元素分析物種分析感應耦合電漿質譜儀液相層析
外文關鍵詞:Multielement analysisSpeciationInfant foodHPLC-DRC-ICP-MSIodineBromine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
第一部分研究:使用DRC-ICP-MS定量嬰兒奶粉中Cr、As、Cd、Sn、I、Hg、Pb。研究中配製模擬基質溶液以模擬奶粉基質中可能造成的多原子離子干擾,以探討動態反應槽 (Dynamic Reaction Cell)系統之最適化條件,期望能夠有效的降低基質所造成的光譜性干擾,如40Ar12C+、35Cl16OH+、40Ar35Cl+、95Mo16O+對52Cr+、75As+、111Cd+所造成的光譜干擾,以獲得準確之定量結果。在樣品前處理的部分,利用微波消化系統搭配HNO3將樣品完全消化,所有的分析流程皆須符合品質管制標準的程序。選取NRCC DOLT-3、NIST 1568a以及NIST SRM 8435三種標準參考樣品進行方法準確度之驗證。再應用於市售嬰兒食品以及糙米的多重微量元素分析,偵測極限介於0.0009–0.008 ng mL-1,樣品添加回收率則是在93-111%範圍之間,進一步證明本實驗的準確性及可行性。
第二部分研究:利用陰離子交換層析法 (Anion-exchange chromatography) 結合ICP-MS對嬰兒食品中的碘與溴物種進行分析,然而使用HPLC-ICP-MS進行分析具有來自多原子離子(如38Ar40ArH+於79Br+和40Ar40ArH+於81Br+ )所造成的干擾。因此本實驗利用動態反應槽系統來減輕光譜干擾。層析系統使用PRP-X100的陰離子交換管柱,以20 mM NH4NO3 (pH 10.2 )為動相A,120 mM NH4NO3 (pH 10.2)為動相B,藉由梯度沖提的方式在6 min能夠有效的分離BrO3-、Br-、IO3-、I-四種分析物,偵測極限分別為0.070 ng mL-1、0.067 ng mL-1、0.006 ng mL-1、0.008 ng mL-1,各物種波峰高度及波峰面積的再現性皆優於4.8% (n = 5),其校正曲線相關係數皆優於0.9991,而各物種添加回收率(spike recovery)介於95-105之間。
固體樣品的萃取方法為以5 mL 10% m/v TMAH進行微波萃取,其溴與碘的回收率可達91%和93%。並選取NIST SRM 8435標準參考樣品進行方法準確度之驗證,再應用於市售瓶裝水、海帶芽、以及嬰兒奶粉的碘與溴物種分析。
First parts presents a method based on DRC-ICP-MS for simultaneous determination of Cr, As, Sn, Cd, I, Hg, Pb in infant food. For detection of Cr, As and Cd, an ICP-MS equipped with a dynamic reaction cell (DRC) was used. The interfering 40Ar12C+, 35Cl16OH+, 40Ar12CH+, 40Ar35Cl+, 95Mo16O+ ions at masses 52, 53, 75 and 111 were reduced by using O2 as reaction cell gas. The limit of detection for multi-element were in the range of 0.0009–0.008 ng mL-1. All analytical procedures are subject to the standard quality control procedures. The accuracy of the method was validated using three kinds of reference materials NIST SRM 8435, NRCC DOLT-3 and NIST SRM 1568a. Methodology developed here was applied to investigate multi-element in infant food and brown rice.
Second parts presents a method based on HPLC-DRC-ICP-MS for the simultaneous determination of Iodine and Bromine in infant food. The separation was performed on an anion exchange column PRP-X100 using a gradient elution program between 20 mM NH4NO3 at pH 10.2 as first mobile phase and 120 mM NH4NO3 at pH 10.2 as the second one. Separation of the Iodine and Bromine species was carried out in less than 6 min. The detection limit for Bromate, Bromide, Iodate and Iodide were 0.070 ng mL-1, 0.067 ng mL-1, 0.006 ng mL-1 and 0.008 ng mL-1, respectively. Reproducibility was 4.8% for 5 replicate injections. Iodine and Bromine species were extracted from infant food using 5 mL 10% TMAH and microwave assisted extraction procedure. The extraction efficiency of Iodine and Bromine were about 91% and 93% for 5 minutes at 90oC. The accuracy of the method was validated using reference materials NIST SRM 8435. Methodology developed here was applied to investigate Iodine and Bromine speciation in bottled water, seaweed and infant food.
目錄
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi

第一章 感應耦合電漿質譜儀於嬰兒食品中鉻、砷、鎘、錫、碘、汞、鉛分析之應用
壹、前言 1
貳、鉻、砷、鎘、錫、碘、汞、鉛之各論 3
參、動態反應槽 (Dynamic Reaction Cell,DRC) 原理 5
肆、實驗部分 8
一、儀器裝置與設備 8
二、試藥與溶液的配製 10
伍、樣品的製備與分析 11
一、樣品微波消化 11
二、樣品分析及回收率測定 12
三、含水因子修正 14
陸、品質管制規範標準 14
柒、結果與討論 16
一、DRC系統操作條件的最佳化 16
二、校正曲線與偵測極限的估計 19
三、真實樣品定量分析 26
捌、結論 32
玖、參考文獻 33

第二章 液相層析法結合感應耦合電漿質譜儀於食品中碘、溴物種型態分析之應用
壹、前言 37
貳、實驗部分 41
一、儀器裝置與設備 41
二、試藥與溶液的配製 43
參、實驗過程 45
一、液相層析分離條件探討 45
二、DRC-ICP-MS 系統最適化探討 45
三、再現性 46
四、校正曲線及偵測極限 46
五、真實樣品分析 47
肆、結果與討論 50
一、液相層析條件之分離條件最適化 50
二、DRC系統之最佳化 57
三、重複性、檢量線性與偵測極限 67
四、食品中碘與溴物種總量與萃取效率探討 71
五、真實樣品的分析應用 75
伍、結論 90
陸、參考文獻 91


圖目錄
第一章 感應耦合電漿質譜儀於嬰兒食品中鉻、砷、錫、鎘、碘、汞、鉛分析之應用
圖1- 1 ICP-MS (ELAN 6100 DRCⅡ)儀器示意圖 9
圖1- 2實驗步驟流程圖 12
圖1- 3使用O2為反應氣體,改變流速對(a)52Cr訊號及背景訊號(b)75As訊號及背景訊號(c)111Cd訊號及背景訊號(d)120Sn訊號及背景訊號( e)127I訊號及背景訊號(f)202Hg訊號及背景訊號的影響 19
圖1- 4使用O2為反應氣體,改變流速對(a)208Pb訊號及背景訊號(b)91Zr訊號及背景訊號(c)預估偵測極限值(EDL)的影響 20
圖1-5使用O2為反應氣體,改變Rpq觀察(a)52Cr分析物訊號及背景訊號(b)75As16O分析物訊號及背景訊號(c)111Cd分析物訊號及背景訊號(d)120Sn分析物訊號及背景訊號(e)127I分析物訊號及背景訊號(f)202Hg分析物訊號及背景訊號 21
圖1- 6使用O2為反應氣體,改變Rpq觀察(a)208Pb分析物訊號及背景訊號(b)預估偵測極限(EDL)的影響 22
圖1-7使用O2為反應氣體,改變AFV觀察(a)52Cr分析物訊號及背景訊號(b)75As16O分析物訊號及背景訊號(c)111Cd分析物訊號及背景訊號(d)120Sn分析物訊號及背景訊號(e)127I分析物訊號及背景訊號(f)202Hg分析物訊號及背景訊號 23
圖1- 8使用O2為反應氣體,改變AFV觀察(a) 208Pb分析物訊號及背景訊號(b)預估偵測極限(EDL)的影響 24


第二章 液相層析法結合感應耦合電漿質譜儀於食品中碘、溴物種型態分析之應用
圖2- 1 HPLC-ICP-MS系統示意圖 42
圖2- 2實驗流程圖 48
圖2- 3樣品萃取的流程圖 49
圖2- 4動相A之濃度對分離的影響 51
圖2- 5動相B之濃度對分離的影響 52
圖2- 6改變動相A至動相B的ramp時間對分離的影響 54
圖2- 7改變動相開始切換的時間對分離之影響 55
圖2- 8動相之pH值對分離的影響 56
圖2- 9為三種不同種類的反應氣體,觀察改變反應氣體流速對於碘與溴訊號之影響 58
圖2- 10以CH4為反應氣體,改變反應氣體流速對於溴訊號之影響 59
圖2-11為三種不同種類之反應氣體,改變反應氣體流速對預估偵測極限(EDL)的影響 60
圖2- 12改變Rpq對分析物訊號的影響 62
圖2- 13改變Rpq對預估偵測極限(EDL)的影響 63
圖2- 14改變AFV對分析物訊號的影響 64
圖2- 15改變AFV對預估偵測極限(EDL)的影響 65
圖2- 16不同萃取試劑萃取海帶芽之萃取效率。 72
圖2- 17不同萃取時間萃取海帶芽之萃取效率 73
圖2- 18不同萃取溫度萃取海帶芽之萃取效率 74
圖2- 19市售瓶裝水1層析圖 78
圖2- 20市售瓶裝水2層析圖 79
圖2- 21市售瓶裝水3層析圖 80
圖2- 22海帶芽的碘與溴之層析圖 82
圖2- 23 NIST SRM 8435的碘與溴之層析圖 84
圖2- 24市售嬰兒奶粉1的碘與溴之層析圖 86
圖2- 25市售嬰兒奶粉2的碘與溴之層析圖 87
圖2- 26市售嬰兒奶粉3的碘與溴之層析圖 88


表目錄
第一章 感應耦合電漿質譜儀於嬰兒食品中鉻、砷、錫、鎘、碘、汞、鉛分析之應用
表1- 1各偵測同位素之自然界含量與質量干擾表 3
表1- 2 ICP-MS系統操作條件 9
表1- 3微波消化升溫程式 12
表1- 4品質管制的分析流程 13
表1- 5各元素以DRC-ICP-MS系統所測得之校正曲線及偵測極限 25
表1- 6 NIST SRM 8435、NIST 1568a 及NRCC DOLT-3之定量結果 28
表1- 7市售糙米樣品之分析結果 29
表1- 8市售嬰兒副食品樣品之分析結果 30
表1- 9市售嬰兒奶粉樣品之分析結果 31

第二章 液相層析法結合感應耦合電漿質譜儀於食品中碘、溴物種型態分析之應用
表2- 1 碘建議攝取量(μg) 38
表2- 2 微波消化升溫程式 49
表2- 3 微波輔助萃取升溫程式 49
表2- 4 HPLC-DRC-ICP-MS系統操作條件 66
表2- 5 碘及溴物種滯留時間與分析訊號之再現性 68
表2- 6 碘及溴物種校正曲線及偵測極限 69
表2- 7 碘與溴物種偵測極限之比較 70
表2- 8 市售瓶裝水中碘及溴物種之含量 81
表2- 9 海帶芽樣品中碘及溴物種之含量 83
表2- 10 NIST SRM 8435標準參考樣品中碘及溴物種之含量 85
表2- 11市售三種嬰兒奶粉中碘及溴物種之含量 89
第一章 感應耦合電漿質譜儀於嬰兒食品中鉻、砷、錫、鎘、碘、汞、鉛分析之應用
1.Hayes, D. J.; Shogren, J. F.; Shin, S. Y.; Kliebenstein, J. B. Am J Agr Econ Valuing Food Safety in Experimental Auction Markets 1995, 77, 40-53.
2.Clemens, S.; Monperrus, M.; Donard, O. F. X.; Amouroux, D.; Guerin, T. Anal Bioanal Chem Mercury speciation analysis in seafood by species-specific isotope dilution: method validation and occurrence data 2011, 401, 2699-2711.
3.Dolan, S. P.; Capar, S. G. J Food Compos Anal Multi-element analysis of food by microwave digestion and inductively coupled plasma-atomic emission spectrometry 2002, 15, 593-615.
4.Krejpcio, Z.; Sionkowski, S.; Bartela, J. Pol J Environ Stud Safety of fresh fruits and juices available on the polish market as determined by heavy metal residues 2005, 14, 877-881.
5.Da-Col, J. A.; Domene, S. M. A.; Pereira, E. R. Food Anal Method Fast Determination of Cd, Fe, Pb, and Zn in Food using AAS 2009, 2, 110-115.
6.Sardans, J.; Montes, F.; Penuelas, J. Spectrochim Acta B Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry 2010, 65, 97-112.
7.Ribeiro, A. S.; Moretto, A. L.; Arruda, M. A. Z.; Cadore, S. Microchim Acta Analysis of powdered coffee and milk by ICPOES after sample treatment with tetramethylammonium hydroxide 2003, 141, 149-155.
8.de la Rocha, S. R.; Sanchez-Muniz, F. J.; Gomez-Juaristi, M.; Marin, M. T. L. J Food Compos Anal Trace elements determination in edible seaweeds by an optimized and validated ICP-MS method 2009, 22, 330-336.
9.Dernovics, M.; Lobinski, R. Anal. Chem. Speciation analysis of selenium metabolites in yeast-based food supplements by ICPMS - Assisted hydrophilic interaction HPLC - Hybrid linear ion trap/orbitrap MS(n) 2008, 80, 3975-3984.
10.Batista, B. L.; Rodrigues, J. L.; de Souza, S. S.; Souza, V. C. O.; Barbosa, F. Food Chem. Mercury speciation in seafood samples by LC-ICP-MS with a rapid ultrasound-assisted extraction procedure: Application to the determination of mercury in Brazilian seafood samples 2011, 126, 2000-2004.
11.Ferreira, H. S.; Santos, A. C. N.; Portugal, L. A.; Costa, A. C. S.; Miro, M.; Ferreira, S. L. C. Talanta Pre-concentration procedure for determination of copper and zinc in food samples by sequential multi-element flame atomic absorption spectrometry 2008, 77, 73-76.
12.Garivait, S.; Quisefit, J. P.; deChateaubourg, P.; Malingre, G. X-Ray Spectrom. Multi-element analysis of plants by WDXRF using the scattered radiation correction method 1997, 26, 257-264.
13.Nunes, L. S.; Barbosa, J. T. P.; Fernandes, A. P.; Lemos, V. A.; dos Santos, W. N. L.; Korn, M. G. A.; Teixeira, L. S. G. Food Chem. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation 2011, 127, 780-783.
14.Ljung, K.; Palm, B.; Grander, M.; Vahter, M. Food Chem. High concentrations of essential and toxic elements in infant formula and infant foods - A matter of concern 2011, 127, 943-951.
15.Mania, M.; Wojciechowska-Mazurek, M.; Starska, K.; Rebeniak, M.; Szynal, T.; Strzelecka, A.; Postupolski, J. Pol J Environ Stud Toxic Elements in Commercial Infant Food, Estimated Dietary Intake, and Risk Assessment in Poland 2015, 24, 2525-2536.
16.Coedo, A. G.; Dorado, T.; Fernandez, B. J.; Alguacil, F. J. Anal. Chem. Isotope dilution analysis for flow injection ICPMS determination of microgram per gram levels of boron in iron and steel after matrix removal 1996, 68, 991-996.
17.Beauchemin, D.; Specht, A. A. Anal. Chem. On-line isotope dilution analysis with ICPMS using reverse flow injection 1997, 69, 3183-3187.
18.Jablonska-Czapla, M.; Szopa, S. Water Sci Tech-W Sup Arsenic, antimony and chromium speciation using HPLC-ICP-MS in selected river ecosystems of Upper Silesia, Poland - a preliminary study and validation of methodology 2016, 16, 354-361.
19.Narukawa, T.; Matsumoto, E.; Nishimura, T.; Hioki, A. Anal. Sci. Reversed Phase Column HPLC-ICP-MS Conditions for Arsenic Speciation Analysis of Rice Flour 2015, 31, 521-527.
20.Division of Toxicology and Environmental Medicine, Agency for Toxic Substances and Disease Registry, U.S. Department of Health and Human Services. Detailed data table for the 2011 priority list of hazardous substances that will be the subject of toxicological profiles.
21.Trzcinka-Ochocka, M.; Brodzka, R.; Janasik, B. J Clin Lab Anal Useful and Fast Method for Blood Lead and Cadmium Determination Using ICP-MS and GF-AAS; Validation Parameters 2016, 30, 130-139.
22.Izgi, B.; Kayar, M. Talanta Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2015, 139, 117-122.
23.Fujisaki, K.; Matsumoto, H.; Shimokawa, Y.; Kiyotaki, K. Anal. Sci. Simultaneous Quantification of Iodine and Other Elements in Infant Formula by ICP-MS Following an Acid Digestion with Nitric Acid and Hydrogen Peroxide 2016, 32, 167-170.
24.Darwish, H. W.; Al-Osaimi, A.; Ahmed, K. O.; Bakheit, A. H. Main Group Chem. Quantification of total mercury in compact fluorescent lamps in Saudi Arabia using inductively coupled plasma mass spectrometry (ICP-MS) 2016, 15, 117-124.
25.Zhang, L.; Ren, Z. Y.; Nichols, A. R. L.; Zhang, Y. H.; Zhang, Y.; Qian, S. P.; Liu, J. Q. J. Anal. At. Spectrom. Lead isotope analysis of melt inclusions by LA-MC-ICP-MS 2014, 29, 1393-1405.
26.Moens, L. J.; Vanhaecke, F. F.; Bandura, D. R.; Baranov, V. I.; Tanner, S. D. J. Anal. At. Spectrom. Elimination of isobaric interferences in ICP-MS, using ion-molecule reaction chemistry: Rb/Sr age determination of magmatic rocks, a case study 2001, 16, 991-994.
27.D''Ilio, S.; Violante, N.; Majorani, C.; Petrucci, F. Anal. Chim. Acta Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: Still a challenge? A review 2011, 698, 6-13.
28.Tanner, S. D.; Baranov, V. I.; Bandura, D. R. Spectrochim Acta B Reaction cells and collision cells for ICP-MS: a tutorial review 2002, 57, 1361-1452.
29.行政院衛生署食品藥物管理局實驗室品質管理規範.
30.Saracoglu, S.; Saygi, K. O.; Uluozlu, O. D.; Tuzen, M.; Soylak, M. Food Chem. Determination of trace element contents of baby foods from Turkey 2007, 105, 280-285.
31.Zand, N.; Chowdhry, B. Z.; Zotor, F. B.; Wray, D. S.; Amuna, P.; Pullen, F. S. Food Chem. Essential and trace elements content of commercial infant foods in the UK 2011, 128, 123-128.

第二章 液相層析法結合感應耦合電漿質譜儀於食品中碘、溴物種型態分析之應用
1.Resano, M.; Garcia-Ruiz, E.; Moens, L.; Vanhaecke, F., Solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry for the direct determination of traces of iodine. J. Anal. At. Spectrom. 2005, 20 (2), 81-87.
2.Larsen, E. H.; Ludwigsen, M. B., Determination of iodine in food-related certified reference materials using wet ashing and detection by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1997, 12 (4), 435-439.
3.Ljung, K.; Palm, B.; Grander, M.; Vahter, M., High concentrations of essential and toxic elements in infant formula and infant foods - A matter of concern. Food Chem. 2011, 127 (3), 943-951.
4.Zhang, W. N.; Liu, X. Q.; Jia, X. Y.; Han, Y.; Liu, X. L.; Xie, X. J.; Lu, J. L.; Duan, T. C.; Chen, H. T., Fast Speciation of Iodide and Iodate in Edible Salts and Human Urine by Short Column IC Coupled with Inductively Coupled Plasma MS. Chromatographia 2010, 72 (9-10), 1009-1012.
5.Shah, M.; Wuilloud, R. G.; Kannamkumaratha, S. S.; Caruso, J. A., Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J. Anal. At. Spectrom. 2005, 20 (3), 176-182.
6.行政院衛生福利部國民健康署第七版國人膳食營養素參考攝取量.
7.Fecher, P. A.; Goldmann, I.; Nagengast, A., Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction. J. Anal. At. Spectrom. 1998, 13 (9), 977-982.
8.Yamanaka, M.; Sakai, T.; Kumagai, H.; Inoue, Y., Specific determination of bromate and iodate in ozonized water by ion chromatography with postcolumn derivatization and inductively-coupled plasma mass spectrometry. J. Chromatogr. A 1997, 789 (1-2), 259-265.
9.Romaris-Hortas, V.; Moreda-Pineiro, A.; Bermejo-Barrera, P., Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination. Talanta 2009, 79 (3), 947-952.
10.Peng, Y. E.; Guo, W.; Zhang, J.; Guo, Q. H.; Jin, L. L.; Hu, S. H., Sensitive screening of bromate in drinking water by an improved ion chromatography ICP-MS method. Microchem. J. 2016, 124, 127-131.
11.Fukushi, K.; Ishio, N.; Urayama, H.; Takeda, S.; Wakida, S.; Hiiro, K., Simultaneous determination of bromide, nitrite and nitrate ions in seawater by capillary zone electrophoresis using artificial seawater as the carrier solution. Electrophoresis 2000, 21 (2), 388-395.
12.Michalke, B.; Schramel, P., Iodine speciation in biological samples by capillary electrophoresis - inductively coupled plasma mass spectrometry. Electrophoresis 1999, 20 (12), 2547-2553.
13.Mishra, S.; Singh, V.; Jain, A.; Verma, K. K., Determination of iodide by derivatization to 4-iodo-N,N-dimethylaniline and gas chromatography-mass spectrometry. Analyst 2000, 125 (3), 459-464.
14.Cavalli, S.; Polesello, S.; Valsecchi, S., Chloride interference in the determination of bromate in drinking water by reagent free ion chromatography with mass spectrometry detection. J. Chromatogr. A 2005, 1085 (1), 42-46.
15.Wang, T.; Lin, W. M.; Dai, X. L.; Gao, L. J.; Wang, B.; Quan, D. Q., Determination of Iodate by HPLC-UV after On-Line Electrochemical Reduction to Iodide. J. Chromatogr. Sci. 2015, 53 (2), 280-284.
16.Chen, Z.; Megharaj, M.; Naidu, R., Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry. Talanta 2007, 72 (5), 1842-6.
17.王凱恩〝毛細管電泳及液相層析法結合感應耦合電漿質譜儀於碘與溴之物種分析應用〞國立中山大學碩士論文,民國95年7月
18.陳晶環〝毛細管電泳結合感應耦合電漿質譜儀應用於食品及生物樣品中溴、碘、鈷、硒及碲物種之分析〞國立中山大學碩士論文,民國96年6月
19.Han, X.; Cao, L. H.; Cheng, H. Y.; Liu, J. H.; Xu, Z. G., Determination of iodine species in seaweed and seawater samples using ion-pair reversed phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Anal Methods-Uk 2012, 4 (10), 3471-3477.
20.Han, C.; Sun, J. N.; Cheng, H. Y.; Liu, J. H.; Xu, Z. G., Speciation analysis of urine iodine by ion-pair reversed-phase liquid chromatography and inductively coupled plasma mass spectrometry. Anal Methods-Uk 2014, 6 (14), 5369-5375.
21.Chen, Z. L.; Megharaj, M.; Naidu, R., Speciation of iodate and iodide in seawater by non-suppressed ion chromatography with inductively coupled plasma mass spectrometry. Talanta 2007, 72 (5), 1842-1846.
22.Divjak, B.; Novic, M.; Goessler, W., Determination of bromide, bromate and other anions with ion chromatography and an inductively coupled plasma mass spectrometer as element-specific detector. J. Chromatogr. A 1999, 862 (1), 39-47.
23.Chen, Z. L.; Megharaj, M.; Naidu, R., Determination of bromate and bromide in seawater by ion chromatography, with an ammonium salt solution as mobile phase, and inductively coupled plasma mass spectrometry. Chromatographia 2007, 65 (1-2), 115-118.
24.Romaris-Hortas, V.; Bermejo-Barrera, P.; Moreda-Pineiro, J.; Moreda-Pineiro, A., Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 2012, 745, 24-32.
25.Peters, J. T., All about Albumin. ACADEMIC PRESS 1996, 113.
26.Shah, M.; Wuilloud, R. G.; Kannamkumaratha, S. S.; Caruso, J. A. J. Anal. At. Spectrom. Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection 2005, 20, 176-182.
27.Fecher, P. A.; Goldmann, I.; Nagengast, A. J. Anal. At. Spectrom. Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction 1998, 13, 977-982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 利用感應耦合電漿質譜儀進行生物樣品中微量元素及其物種分析研究
2. 動力反應室結合感應耦合電漿質譜儀在環境及生物樣品中鉻元素及鉻物種之分析應用
3. 液相層析結合感應耦合電漿質譜儀於環境樣品中鉻與硒及穀物樣品中砷與硒型態分析之應用
4. 感應偶合電漿質譜儀在錫及鉻物種分析之應用
5. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於食用藻類中砷物種與水樣及果汁中銻物種之分析應用
6. 液相層析結合感應耦合電漿質譜儀與電灑質譜儀於營養補給品中含硒化合物與藍綠藻中含砷化合物之分析應用
7. 形體篩分層析技術配合感應耦合電漿質譜儀的連線系統測定生物樣品中砷與硒的物種分佈
8. 液相層析儀結合感應耦合電漿質譜儀於魚油樣品及菇類樣品中汞物種分析之應用
9. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於水樣與食品中鉻與銻物種之分析應用
10. 液相層析結合感應耦合電漿質譜儀於魚肉中砷物種及功能性飲料和營養補給品中鈷物種之分析應用
11. 液相層析結合感應耦合電漿質譜儀於海藻中含砷化合物及對含鉻化合物之分析應用
12. 一、 泥漿進樣結合流動注入化學蒸氣生成感應耦合電漿質譜儀於粉末食品中鎘、銻及汞之分析二、 液相層析結合化學蒸氣生成感應耦合電漿質譜儀於水樣中砷物種之分析
13. 液相層析結合感應耦合電漿質譜儀與電噴灑質譜儀於人體尿液中含砷及硒化合物與營養補給品中含鉻及砷化合物之分析應用
14. 離子對逆相層析及陰離子交換層析法結合感應耦合電漿質譜儀與電灑質譜儀於營養補給品和食物樣品中含硒化合物分析之應用
15. 一、毛細管電泳結合感應耦合電漿質譜儀於魚肉中汞物種型態分析應用二、液相層析結合感應耦合電漿質譜於鈷物種型態分析應用
 
無相關期刊