跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何信逸
研究生(外文):Ho, Sin-Yi
論文名稱:鉬氧化物/ 類石墨氮化碳複合材料應用於光催化還原二氧化碳之研究
論文名稱(外文):Molybdenum Oxide / Graphitic Carbon Nitride Composites for Photocatalytic Reduction of Carbon Dioxide
指導教授:曾怡享
指導教授(外文):Tseng, I-Hsiang
口試委員:曾怡享蔡美慧葉瑞銘
口試委員(外文):Tseng, I-HsiangTsai, Mei-HuiYeh, Jui-Ming
口試日期:2018-07-12
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:179
中文關鍵詞:三氧化鉬氧化鉬量子點氧化鉬類石墨氮化碳光催化二氧化碳還原
外文關鍵詞:molybdenum trioxidemolybdenum oxide quantum dotmolybdenum oxidegraphitic carbon nitridephotocatalysiscarbon dioxide reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在類石墨氮化碳二維材料表面附載不同氧化態之氧化鉬材料,來提升應用於可見光下光催化二氧化碳之活性,並探討所製得之觸媒材料性質對二氧化碳光催化還原反應效率之影響。

第一部分:三氧化鉬/類石墨氮化碳光觸媒之製備與性質研究
本研究第一部分以鍛燒法與水熱法製備三氧化鉬/類石墨氮化碳複合(MoO3-gC3N4)。以鉬酸銨四水化合物(Ammonium molybdate tetrahydrate)為鉬前驅物,使用水熱法(210oC)製備三氧化鉬。以含氮之碳氫化合物三聚氰胺(Melamine)為前驅物,以馬費爐於靜態空氣環境下,溫度450oC進行鍛燒製備出含氮之片狀類石墨氮化碳。水熱後之氧化鉬與類石墨氮化碳混合後鍛燒(450oC)。以X光繞射光譜儀鑑定MoO3之晶相和g-C3N4之特徵峰,並使用掃描式電子顯微鏡觀察MoO3及g-C3N4之形貌,且藉由穿透式電子顯微鏡觀察其分布情形,也利用紫外-可見光光譜儀、螢光光譜儀進行光觸媒光學特性之分析;UV-VIS光譜得知類石墨氮化碳的添加有助於吸收邊緣紅位移(相較於MoO3);由ESCA分析結果顯示,氬氣環境下鍛燒的觸媒MoO3-gCN-Ar,其三氧化鉬因缺氧環境下鍛燒,部分還原成二氧化鉬,因而提高其光催化活性。以光催化二氧化碳還原反應評估不同合成路徑之光觸媒之光催化活性,觸媒MoO3-gCN-Ar於8W, 254nm之光源照射8小時下,一氧化碳為唯一還原產物,其產率為0.067 mol/gcat。

第二部分:氧化鉬量子點/類石墨氮化碳光觸媒之製備與性質研究
本研究以鍛燒法與水熱法製備氧化鉬量子點/類石墨氮化碳複合材料( MoOx-QDs-gC3N4 )。以鉬粉為氧化鉬量子點前驅物,使用水熱法(80 °C)製備氧化鉬量子點。以含氮之碳氫化合物三聚氰胺(melamine)為前驅物,以馬費爐於靜態空氣環境下,於溫度500 °C及550 °C進行鍛燒製備出含氮之片狀類石墨氮化碳(g-C3N4)。經水熱後之氧化鉬量子點與類石墨氮化碳混合後鍛燒(300 °C),即得本研究之觸媒;以XRD、XPS、EDX分析皆證實觸媒中含有微量的氧化鉬量子點,鍛燒後類石墨氮化碳仍保有其特徵結構;TEM影像證實類石墨氮化碳上確實含有氧化鉬量子點;UV-VIS光譜得知氧化鉬量子點的添加有助於觸媒吸收邊緣紅位移。本研究以UVA(8 W, 365 nm)光源探討觸媒之光催化還原二氧化碳活性,研究顯示觸媒 MoOx-0.3gCN有最佳之光活性,12小時光源照射下,能將二氧化碳轉為一氧化碳,產率達 0.418 mol/gcat。

第三部分:原位合成氧化鉬/類石墨氮化碳光觸媒之製備與性質研究
本研究以原位合成的方法置備光觸媒,首先我們以熱縮合的方法置得此研究所需的類石墨氮化碳,並將其加入含有二硫化鉬的雙氧水水溶液,經雙氧水強氧化的能力,把二硫化鉬的硫取代成為氧化鉬,含鉬的離子態與類石墨氮化碳表面的氮活性位點可以分散的生長於其表面上,隨後經過酸鹼中和,除掉取代後的硫,經過離心洗滌,即可得到本研究所需的光觸媒XMS-0.1CN。藉由ESCA分析觀察到觸媒30MS-0.1CN相對於其他比例合成的觸媒,擁有最高的Mo4+價態的含量比例,而Mo4+價態的出現,由過去的文獻指出,確實可以提高電荷的傳輸能力並促進其光催化活性。從UV-Vis及Tauc Plot的分析圖譜中可以發現原位合成的觸媒與純類石墨氮化碳相比,吸收邊緣有發生紅位移的現象且能隙也變窄約0.1~0.2eV。由PL圖譜顯示,一系列觸媒發光強度並無隨著趨勢降低,但與純類石墨氮化碳相比螢光強度確實有明顯的降低,表示原位生長後的氧化鉬能有效降低光生電子-電洞的再結合效率。二氧化碳光催化還原反應中,一氧化碳為唯一的成功轉換的產品,30MS-0.1CN是擁有最高轉換產率的觸媒,其轉換率為3.937 ( mol/gcat ),呼應先前ESCA所發現的Mo4+價態比例。此研究顯示原位生長的觸媒與純類石墨氮化碳相比確實能有效提高光催化活性。
In this study, molybdenum oxides with various oxidation states were decorated on two-dimensional graphitic carbon nitride (gCN) to enhance the photocatlytic activity of CO2 reduction under visible light irradiation and to correlate the characteristics of photocatalysts to the efficiency of CO2 conversion.

Part 1: Preparation and Properties of Molybdenum Trioxide / Graphitic Carbon Nitride Composite for Photocatalysis
Molybdemum trioxide/graphitic carbon nitride was prepared by calcination and hydrothermal method. Ammonium molybdate tetrahydrate was the precursor of molybdenum and melamine was for gCN. Molybdenum trioxide (MoO3) was obtained by hydrothermal method (210 °C) and graphitic carbon nitride was by calcination method (450 °C) at Air or Ar. XRD result confirmed the crystal phase of MoO3 and characteristic peaks of gCN. SEM images confirmed the morphology of MoO3 and gCN. TEM images presented the distribution of MoO3. A significant red shift, compared to pure MoO3, revealed from UV-VIS spectra of samples with the presence of gCN. After calcination under Ar, some MoO3 reduced to MoO2 as evidenced from ESCA results of MoO3-gCN-Ar and thus increased photocatalytic activity. Photocatalytic reduction of CO2 showed MoO3-gCN-Ar (8 W, 254 nm) could successfully convert CO2 into CO, and the yield of CO was 0.067 mol/gcat.

Part 2: Preparation and Properties of Molybdenum Oxide Quantum Dots / Graphitic Carbon Nitride Composite for Photocatalysis
In order to further improve the photocatalytic activity of CO2, molybdenum oxide quantum dots/graphitic carbon nitride composites (MoOx-QDs-gCN) were prepared in the second part of this study. Molybdenum oxide quantum dots were prepared by hydrothermal method (80 °C) using molybdenum powder as the precursor. The melamine was used as a precursor to prepare graphitic carbon nitride (gCN) by calcining at 500 °C and 550 °C under air atmosphere. The obtained molybdenum oxide quantum dots were mixed with gCN and then calcined at 300 °C. XRD, ESCA and EDX results confirmed that the catalyst contained molybdenum oxide with various oxidation states on gCN. TEM images showed after calcination graphitic carbon nitride still mentain their characteristic structure. A significant red shift of the absorption edge of MoOx-QDs-gCN, compared to gCN, was observed from UV-VIS spectra. Carbon dioxide photocatalytic reduction results showed MoOx-0.3gCN (8 W, 254 nm) had the best conversion yield of CO and the yield of CO was 0.418 mol/gcat.

Part 3:In-Situ Preparation and Properties of Molybdenum Oxide / Graphitic Carbon Nitride Composite for Photocatalysis
In the third part of this study, in-situ preparation of molybdenum oxide (MoOx) on gCN was attemped to improve the interaction of gCN and MoOx. Thermal condensation method was applied to fabricate graphitic carbon nitride(gCN). Different amounts of molybdenum disulfide (MoS2) were dissolved with hydrogen peroxide solution, followed by the addition of gCN. Strong oxidation of hydrogen peroxide with molybdenum disulfide was ulilized to replace the sulfur atoms of molybdenum disulfide to oxygen atoms. The presence of nitrogen active sites on gCN surface has electronic affinity with molybdenum ions. After the deposition of molybdenum oxide particals on gCN, the remained sulfur ions were removed by neutralization by alkali. After centrifugated and washed, we could obtain the composite photocatalysts and named XMS-0.1CN, where X indicates the volume of MoS2. The results of XPS-Mo3d confirmed that the photocatalyst 30MS-0.1CN had the highest ratio of Mo4+ (compared with the other photocatalyst). The appearance of Mo4+ could improve the charge transport capacity and promote photocatalytic activity. The UV-Vis and Tauc Plot analysis results were shown that the in-situ synthesized photocatalyst had a red shift of the absorption edge compared with pure gCN and the band-gap was narrowed by 0.1 to 0.2 eV. The results of PL spactrum analysis showed that the photoluminescence intensity of in-situ prepared photocatalyst was lower than that from that emitted from pure gCN. This result indicated that molybdenum oxide after in-situ growth could effectively reduce the recombination efficiency of photogenerated electron-holes. In the photocatalytic reduction of carbon dioxide, carbon monoxide was the only successful conversion product. 30MS-0.1CN had the highest conversion yield, 3.937 mol/gcat, as the highest Mo4+ ratio was estimated by ESCA. This study showed that the in-situ growth of the photocatalyst was indeed effective at improving photocatalytic activity compared to pure gCN.

摘 要 II
Abstract V
致 謝 VIII
目 錄 IX
圖目錄 XII
表目錄 XIX
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻回顧 5
2-1 二氧化碳之減量反應 5
2-1-1 二氧化碳簡介 5
2-1-2 二氧化碳之處理技術 7
2-1-3 二氧化碳光催化反應原理 9
2-1-4 提升光催化還原二氧化碳反應 12
2-2 光觸媒簡介 21
2-2-1 光觸媒原理 22
2-2-2 光觸媒-光催化還原二氧化碳反應機制 25
2-2-3 提高光觸媒之反應活性 28
2-3 類石墨氮化碳簡介 31
2-3-1 類石墨氮化碳之性質 32
2-3-2 類石墨氮化碳之製備方法 38
2-3-3 類石墨氮化碳之應用 41
2-4 鉬氧化物光觸媒簡介 45
2-4-1 鉬氧化物之性質 46
2-5 類石墨氮化碳複合材料於光催化二氧化碳之文獻 47
第三章 實驗方法 58
3-1 實驗觸媒之製備 58
3-1-1 實驗藥品 58
3-1-2 實驗儀器型號與規格 60
3-1-3 類石墨氮化碳之製備 62
3-1-4 三氧化鉬之製備 64
3-1-5 氧化鉬量子點之製備 65
3-1-6 三氧化鉬/類石墨氮化碳光觸媒之製備 66
3-1-7 氧化鉬量子點/類石墨氮化碳光觸媒之製備 67
3-1-8 原位合成氧化鉬/類石墨氮化碳光觸媒之製備 68
3-1-9 觸媒代號說明 70
3-2 觸媒之特性分析 72
3-2-1 分析儀器型號與規格 72
3-2-2 分析儀器之原理及方法 73
3-3 光催化活性評估 85
3-3-1 亞甲基藍光催化脫色 85
3-3-2 羅丹明B光催化脫色 86
3-4 二氧化碳光催化反應 87
3-4-1 光催化反應器 87
3-4-2 反應產量檢測 90
3-4-3 光觸媒於光催化二氧化碳還原之效率評估 91
第四章 結果與討論 92
4-1 觸媒特性鑑定與分析 92
4-1-1 X射線繞射圖譜分析( XRD ) 92
4-1-2 穿透式電子顯微鏡分析 ( TEM ) 98
4-1-3 掃描式電子顯微鏡分析 ( SEM ) 104
4-1-4 化學分析電子能譜儀鑑定 ( ESCA-XPS ) 109
4-1-5 紫外光-可見光(UV-Vis)吸收光譜分析 132
4-1-6 螢光(PL)光譜分析 138
4-2 二氧化碳光催化還原反應 141
4-2-1 三氧化鉬/類石墨氮化碳 141
4-2-2 氧化鉬量子點/類石墨氮化碳 142
4-2-3 原位合成氧化鉬/類石墨氮化碳 147
4-3 光能量轉換效率比較 149
第五章 結論 150
第六章 參考文獻 153
第七章 附錄 165

[1] IPCC, Climate Change 2007-Synthesis Report, 2007.
[2] N.E.S.R. Laboratory, The NOAA Annual Greenhouse Gas Index (AGGI), 2015.
[3] UNFCC, KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK, 1997.
[4] N.E.S.R. Laboratory, Noaa earth system research laboratory recently monthly average mauna loa cabon dioxide, 2015.
[5] ShinichiIchikawa, Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis, 1996.
[6] C. Song, CO2 Conversion and Utilization: An Overview. American Chemical Society, 809 (2002) 444.
[7] L. Yuan, Y.-J. Xu, Photocatalytic conversion of CO2 into value-added and renewable fuels, Applied Surface Science, 342 (2015) 154-167.
[8] 林國安, 二氧化碳地下封存技術與展望,鑛冶Mining& Metallurgy ,52(2) (2013) 17-33.
[9] R. Obert, Enzymatic Conversion of Carbon Dioxide to Methanol-  Enhanced Methanol, 1999.
[10] m. Consortium, Identification of functional elements and regulatory circuits by Drosophila modENCODE., 330 (2010) 1787-1797.
[11] R. Angamuthu, Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex, 2010.
[12] S. Kaneco, Y. Ueno, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of CO2 in copper particle-suspended methanol, Chemical Engineering Journal, 119 (2006) 107-112.
[13] N. Takahashi, The new concept 3-way catalyst for automotive lean-burn engine-NOx storage and reduction catalyst, 1996.
[14] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2, Annu Rev Phys Chem, 63 (2012) 541-569.
[15] W. Jiao, Recent progress in red semiconductor photocatalysts for solar energy conversion and utilization, 2016.
[16] J. Hong, W. Zhang, J. Ren, R. Xu, Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods, Analytical Methods, 5 (2013) 1086.
[17] K. Shimura, H. Yoshida, Heterogeneous photocatalytic hydrogen production from water and biomass derivatives, Energy & Environmental Science, 4 (2011) 2467.
[18] J.R. Bolton, Solar fuels, Science, 202 (1978) 705-711.
[19] X. Li, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, 2014.
[20] X. Chen, Nanomaterials for renewable energy production and storage, 2012.
[21] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem Soc Rev, 43 (2014) 5234-5244.
[22] J. Low, B. Cheng, J. Yu, M. Jaroniec, Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels, Energy Storage Materials, 3 (2016) 24-35.
[23] V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, Energy & Environmental Science, 2 (2009) 745.
[24] X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy & Environmental Science, 9 (2016) 2177-2196.
[25] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew Chem Int Ed Engl, 52 (2013) 7372-7408.
[26] Q. Huang, J. Yu, S. Cao, C. Cui, B. Cheng, Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4, Applied Surface Science, 358 (2015) 350-355.
[27] Y. Liao, Z. Hu, Q. Gu, C. Xue, Amine-Functionalized ZnO Nanosheets for Efficient CO2 Capture and Photoreduction, Molecules, 20 (2015) 18847-18855.
[28] H.L. Skriver, N.M. Rosengaard, Surface energy and work function of elemental metals, Physical Review B, 46 (1992) 7157-7168.
[29] X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J. Ye, Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst, Chem Commun (Camb), 50 (2014) 11517-11519.
[30] X. Li, Z. Zhuang, W. Li, H. Pan, Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2, Applied Catalysis A: General, 429-430 (2012) 31-38.
[31] 雷敏宏;吳紀聖, 觸媒化學概論與應用, 2014.
[32] R.D. Richardson, E.J. Holland, B.K. Carpenter, A renewable amine for photochemical reduction of CO2, Nature Chemistry, 3 (2011) 301.
[33] F.E. Osterloh, B.A. Parkinson, Recent developments in solar water-splitting photocatalysis, MRS Bulletin, 36 (2011) 17-22.
[34] J. YANG, Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis, 2012.
[35] W.C. contributors, Solar spectrum en, Wikimedia Commons.
[36] N.M. Dimitrijevic, B.K. Vijayan, O.G. Poluektov, T. Rajh, K.A. Gray, H. He, P. Zapol, Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania, J Am Chem Soc, 133 (2011) 3964-3971.
[37] C.-C. Yang, Vernimmen, J, Meynen, V, Cool, P & Mul, Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15, 284 (2011) 1-8.
[38]吳紀聖, 匡佳謙, 利用光觸媒處理CO2再利用技術, (2016) 18-37.
[39] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37.
[40] Z. Wei, F. Liang, Y. Liu, W. Luo, J. Wang, W. Yao, Y. Zhu, Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film, Applied Catalysis B: Environmental, 201 (2017) 600-606.
[41] 蕭長青, 牟金祿, 陳俊瑜, 清潔生產技術--鐵礦燒結原料添加尿素可改善NOx, SOx之排放, 化工, (2000) 56-67.
[42] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95 (1995) 735-758.
[43] A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Su, B.-J. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges, Nanoscale Horizons, 1 (2016) 243-267.
[44] D.P.B. Yet-Ming Chiang, W. David Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, 1996.
[45] X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Science China Materials, 57 (2014) 70-100.
[46] S. Xie, Q. Zhang, G. Liu, Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures, Chem Commun (Camb), 52 (2016) 35-59.
[47] Y.N. Tan, C.L. Wong, A.R. Mohamed, An Overview on the Photocatalytic Activity of Nano-Doped-TiO2 in the Degradation of Organic Pollutants, ISRN Materials Science, (2011) 1-18.
[48] S. Wang, J.-H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications, Journal of Materials Science & Technology, 33 (2017) 1-22.
[49] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res, 38 (2004) 3001-3008.
[50] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15 (2013) 1-20.
[51] T. Chen, V.O. Rodionov, Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates, ACS Catalysis, 6 (2016) 4025-4033.
[52] 廖怡婷, 摻雜金屬離子之二氧化鈦奈米顆粒及二氧化鈦/二氧化錫奈米複合材料的合成與鑑定, 2009.
[53] J. Liebig, About some nitrogen compounds, Ann. Pharm, (1834).
[54] F. Goettmann, Metal-free catalysis of sustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds, Chemical Communications, 2006.
[55] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nature Materials, 8 (2008) 76.
[56] E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation, New Journal of Chemistry, 26 (2002) 508-512.
[57] Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids, Chemistry of Materials, 22 (2010) 5119-5121.
[58] M.J. Bojdys, J.-O. Müller, M. Antonietti, A. Thomas, Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride, Chemistry - A European Journal, 14 (2008) 8177-8182.
[59] B. Ju¨rgens, Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride  Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies, J. Am. Chem. Soc., (2003).
[60] A. Sattler, S. Pagano, M. Zeuner, A. Zurawski, D. Gunzelmann, J.r. Senker, K. Müller-Buschbaum, W. Schnick, Melamine–Melem Adduct Phases: Investigating the Thermal Condensation of Melamine, Chemistry - A European Journal, 15 (2009) 13161-13170.
[61] B.V. Lotsch, Schnick, W., From Triazines to Heptazines-  Novel Nonmetal Tricyanomelaminates as Precursors for Graphitic Carbon Nitride Materials, Chemistry of Materials, 2006.
[62] X. Wang, S. Blechert, M. Antonietti, Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis, ACS Catalysis, 2 (2012) 1596-1606.
[63] D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J. Tang, Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System, Journal of the American Chemical Society, 136 (2014) 12568-12571.
[64]Ye, C., Li, Z., J., Li, X.-B., Zhang, L-P., Xu, J., Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C3N4 for Photocatalytic O2 Evoluion, ACS Catalysis, 5 (2015) 6973-6979.
[65] H. Li, Y. Liu, X. Gao, C. Fu, X. Wang, Facile Synthesis and Enhanced Visible-Light Photocatalysis of Graphitic Carbon Nitride Composite Semiconductors, ChemSusChem, 8 (2015) 1189-1196.
[66] J. Lin, Z. Pan, X. Wang, Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers, ACS Sustainable Chemistry & Engineering, 2 (2013) 353-358.
[67] Z. Lin, X. Wang, Nanostructure Engineering and Doping of Conjugated Carbon Nitride Semiconductors for Hydrogen Photosynthesis, Angewandte Chemie International Edition, 52 (2013) 1735-1738.
[68] J. Xu, S. Cao, T. Brenner, X. Yang, J. Yu, M. Antonietti, M. Shalom, Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry, Advanced Functional Materials, 25 (2015) 6265-6271.
[69] Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction, ACS Nano, 9 (2015) 12480-12487.
[70] Z. Yang, Y. Zhang, Z. Schnepp, Soft and hard templating of graphitic carbon nitride, Journal of Materials Chemistry A, 3 (2015) 14081-14092.
[71] P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities, Advanced Functional Materials, 22 (2012) 4763-4770.
[72] H. Xiao, W. Wang, G. Liu, Z. Chen, K. Lv, J. Zhu, Photocatalytic performances of g-C3N4 based catalysts for RhB degradation: Effect of preparation conditions, Applied Surface Science, 358 (2015) 313-318.
[73] C. Quintero, Carlos, J., Xu, Y.-J., Heterogeneous Photocatalysis: From Fundamentals to Green Applications., 2016.
[74] P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermal decomposition (pyrolysis) of urea in an open reaction vessel, Thermochimica Acta, 424 (2004) 131-142.
[75] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, Journal of Materials Chemistry, 21 (2011) 14398.
[76] F. Dong, Y. Li, Z. Wang, W.-K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation, Applied Surface Science, 358 (2015) 393-403.
[77] F. Dong, Z. Wang, Y. Sun, W.-K. Ho, H. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, Journal of Colloid and Interface Science, 401 (2013) 70-79.
[78] W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability, Chemical Reviews, 116 (2016) 7159-7329.
[79] J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis, ACS Applied Materials & Interfaces, 6 (2014) 16449-16465.
[80] G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts, Journal of Materials Chemistry, 22 (2012) 8083.
[81] Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4 (2012) 5300.
[82] D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride, Angewandte Chemie International Edition, 53 (2014) 9240-9245.
[83] P. Wang, S. Sun, X. Zhang, X. Ge, W. Lü, Efficient degradation of organic pollutants and hydrogen evolution by g-C3N4 using melamine as the precursor and urea as the modifier, RSC Advances, 6 (2016) 33589-33598.
[84] B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C3N4, Applied Surface Science, 344 (2015) 188-195.
[85] C.-T. Yang, W.W. Lee, H.-P. Lin, Y.-M. Dai, H.-T. Chi, C.-C. Chen, A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: synthesis, characterization, photocatalytic activity, and mechanism, RSC Advances, 6 (2016) 40664-40675.
[86] Z. Zhao, Y. Sun, Q. Luo, F. Dong, H. Li, W.-K. Ho, Mass-Controlled Direct Synthesis of Graphene-like Carbon Nitride Nanosheets with Exceptional High Visible Light Activity. Less is Better, Scientific Reports, 5 (2015) 14643.
[87] H. Wang, Z. Sun, Q. Li, Q. Tang, Z. Wu, Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420 nm UV light, Journal of CO2 Utilization, 14 (2016) 143-151.
[88] B. Chai, X. Liao, F. Song, H. Zhou, Fullerene modified C3N4composites with enhanced photocatalytic activity under visible light irradiation, Dalton Trans., 43 (2014) 982-989.
[89] J. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light, Journal of Materials Chemistry, 22 (2012) 15006.
[90] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light, Advanced Materials, 25 (2013) 2452-2456.
[91] G. Dong, L. Zhang, Porous structure dependent photoreactivity of graphitic carbon nitride under visible light, J. Mater. Chem., 22 (2012) 1160-1166.
[92] Y. Huang, Y. Wang, Y. Bi, J. Jin, M.F. Ehsan, M. Fu, T. He, Preparation of 2D hydroxyl-rich carbon nitride nanosheets for photocatalytic reduction of CO2, RSC Advances, 5 (2015) 33254-33261.
[93] K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Applied Catalysis B: Environmental, 176-177 (2015) 44-52.
[94] T. Sano, S. Tsutsui, K. Koike, T. Hirakawa, Y. Teramoto, N. Negishi, K. Takeuchi, Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase, Journal of Materials Chemistry A, 1 (2013) 6489.
[95] F. Dong, Z. Wang, Y. Li, W.-K. Ho, S.C. Lee, Immobilization of Polymeric g-C3N4 on Structured Ceramic Foam for Efficient Visible Light Photocatalytic Air Purification with Real Indoor Illumination, Environmental Science & Technology, 48 (2014) 10345-10353.
[96] Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.-K. Ho, Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity, Nanoscale, 7 (2015) 2471-2479.
[97] G. Dong, L. Zhang, Porous structure dependent photoreactivity of graphitic carbon nitride under visible light, Journal of Materials Chemistry, 22 (2012) 1160-1166.
[98] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, Journal of Materials Chemistry, 21 (2011) 14398-14401.
[99] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21 (2011) 15171-15174.
[100] J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light, Catalysis Science & Technology, 3 (2013) 1253-1260.
[101] M. Reli, P. Huo, M. Šihor, N. Ambrožová, I. Troppová, L. Matějová, J. Lang, L. Svoboda, P. Kuśtrowski, M. Ritz, P. Praus, K. Kočí, Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O, The Journal of Physical Chemistry A, 120 (2016) 8564-8573.
[102] H. Shi, G. Chen, C. Zhang, Z. Zou, Polymeric g-C3N4 Coupled with NaNbO3 Nanowires toward Enhanced Photocatalytic Reduction of CO2 into Renewable Fuel, ACS Catalysis, 4 (2014) 3637-3643.
[103] J. Yu, K. Wang, W. Xiao, B. Cheng, Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts, Physical Chemistry Chemical Physics, 16 (2014) 11492-11501.
[104] T. Ohno, N. Murakami, T. Koyanagi, Y. Yang, Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light, Journal of CO2 Utilization, 6 (2014) 17-25.
[105] W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, Journal of Materials Chemistry A, 3 (2015) 19936-19947.
[106] Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu, L. Zhao, Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction, Solar Energy Materials and Solar Cells, 137 (2015) 175-184.
[107] H. Li, S. Gan, H. Wang, D. Han, L. Niu, Intercorrelated Superhybrid of AgBr Supported on Graphitic-C3N4-Decorated Nitrogen-Doped Graphene: High Engineering Photocatalytic Activities for Water Purification and CO2 Reduction, Adv Mater, 27 (2015) 6906-6913.
[108] Y. Huang, M. Fu, T. He, Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2, Place Published, 2015.
[109] J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid, Applied Catalysis B: Environmental, 179 (2015) 1-8.
[110] M. Li, L. Zhang, M. Wu, Y. Du, X. Fan, M. Wang, L. Zhang, Q. Kong, J. Shi, Mesostructured CeO2/g-C3N4 nanocomposites:Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations, Nano Energy, 19 (2016) 145-155.
[111] X. Zhang, L. Wang, Q. Du, Z. Wang, S. Ma, M. Yu, Photocatalytic CO2 reduction over B4C/C3N4 with internal electric field under visible light irradiation, Journal of Colloid and Interface Science, 464 (2016) 89-95.
[112] Y. Bai, L. Ye, L. Wang, X. Shi, P. Wang, W. Bai, P.K. Wong, g-C3N4/Bi4O5I2 heterojunction with I3−/I− redox mediator for enhanced photocatalytic CO2 conversion, Applied Catalysis B: Environmental, 194 (2016) 98-104.
[113] L. Ye, D. Wu, K.H. Chu, B. Wang, H. Xie, H.Y. Yip, P.K. Wong, Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction, Chemical Engineering Journal, 304 (2016) 376-383.
[114] Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, X. Shi, W. Bai, Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation, Solar Energy Materials and Solar Cells, 157 (2016) 406-414.
[115] H. Wang, Z. Sun, Q. Li, Q. Tang, Z. Wu, Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420nm UV light, Journal of CO2 Utilization, 14 (2016) 143-151.
[116] Y. Wang, Y. Xu, Y. Wang, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O, Catalysis Communications, 74 (2016) 75-79.
[117] Y. Wang, X. Bai, H. Qin, F. Wang, Y. Li, X. Li, S. Kang, Y. Zuo, L. Cui, Facile One-Step Synthesis of Hybrid Graphitic Carbon Nitride and Carbon Composites as High-Performance Catalysts for CO2 Photocatalytic Conversion, ACS Applied Materials & Interfaces, 8 (2016) 17212-17219.
[118] M. Li, L. Zhang, X. Fan, M. Wu, M. Wang, R. Cheng, L. Zhang, H. Yao, J. Shi, Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction, Applied Catalysis B: Environmental, 201 (2017) 629-635.
[119] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity, Small, 13 (2017).
[120] W.-J. Ong, L.K. Putri, Y.-C. Tan, L.-L. Tan, N. Li, Y.H. Ng, X. Wen, S.-P. Chai, Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study, Nano Research, 10 (2017) 1673-1696.
[121] Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, Y. He, In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation, Journal of Materials Research, 32 (2017) 3660-3668.
[122] 羅聖全, 科學基礎研究之重要利器-掃瞄式電子顯微鏡(SEM) 科學研習月刊, (5), 52-5. (2013).
[123] 羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹– TEM, 科學研習月刊, (6), 48-9. (2013)
[124] D.B. Williams, Carter, C. B., Transmission Electron Microscopy., 2009.
[125] Y.W. Chung, Introduction to Materials Science and Engineering, 2006.
[126] J.P. Eberhart, Structural and Chemical Analysis of Materials: X-Ray, Electron and Neutron Diffraction; X-Ray, Electron and Ion Spectrometry; Electron Microscopy., 1991.
[127] C. Weidenthaler, Pitfalls in the characterization of nanoporous and nanosized materials, Nanoscale, 3 (2011) 792-810.
[128] S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, Springer Berlin Heidelberg, Place Published, 2013.
[129] I.S.G. John C. Vickerman, Surface Analysis - The Principal Techniques, 2nd Edition, 2009.
[130] J.R. Anderson, Pratt, K. C.,, Introduction to Characterization and Testing of Catalysts Academic Press, 1985.
[131] 張立信, 表面化學分析技術, 奈米通訊, 19 (4) (2012) 17-23.
[132] 陳俊龍, AES/ESCA 表面分析技術於工業材料上的應用, 106, (1995) 69-77.
[133] 郭沁林. X射线光电子能谱[J]. 物理, 36 (5) (2007) 2-4.
[134] Hufner, S., Photoelectron Spectroscopy Principles and Applications, 2003.
[135] W.W. Wendlandt, Hecht, H. G., Reflectance spectroscopy, 1966.
[136] H. McNair, INTRODUCTION TO GC, 2017.
[137]Muhammad Tahir, Chuanbao Cao, Faheem K. Butt, Faryal Idrees, Nasir Mahmood, Zulfiqar Ali, Imran Aslam, M. Tanveer, Muhammad Rizwan and Tariq Mahmood, Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis, J. Mater. Chem. A, 1(2013) 13949-13955.
[138] A. Chithambararaj, N. Rajeswari Yogamalar, A.C. Bose, Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport, Crystal Growth & Design, 16 (2016) 1984-1995.
[139] P. Nikulshin, A. Mozhaev, K. Maslakov, A. Pimerzin, V. Kogan, 2014 Nikulshin Appl Catal B, Place Published, 2014.
[140] Z. Chen, J. Cao, L. Yang, W. Yin, X. Wei, The unique photocatalysis properties of a 2D vertical MoO2/WO2 heterostructure: a first-principles study, Journal of Physics D: Applied Physics, 51 (2018) 265106.
[141] C. Zhengjie, C. Juexian, Y. Liwen, Y. Wenjin, W. Xiaolin, The unique photocatalysis properties of a 2D vertical MoO2 /WO2 heterostructure: a first-principles study, Journal of Physics D: Applied Physics, 51 (2018) 265106.
[142] K. Lai, Y. Zhu, J. Lu, Y. Dai, B. Huang, N- and Mo-doping Bi2WO6 in photocatalytic water splitting, Computational Materials Science, 67 (2013) 88-92.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊