|
[1] IPCC, Climate Change 2007-Synthesis Report, 2007. [2] N.E.S.R. Laboratory, The NOAA Annual Greenhouse Gas Index (AGGI), 2015. [3] UNFCC, KYOTO PROTOCOL TO THE UNITED NATIONS FRAMEWORK, 1997. [4] N.E.S.R. Laboratory, Noaa earth system research laboratory recently monthly average mauna loa cabon dioxide, 2015. [5] ShinichiIchikawa, Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis, 1996. [6] C. Song, CO2 Conversion and Utilization: An Overview. American Chemical Society, 809 (2002) 444. [7] L. Yuan, Y.-J. Xu, Photocatalytic conversion of CO2 into value-added and renewable fuels, Applied Surface Science, 342 (2015) 154-167. [8] 林國安, 二氧化碳地下封存技術與展望,鑛冶Mining& Metallurgy ,52(2) (2013) 17-33. [9] R. Obert, Enzymatic Conversion of Carbon Dioxide to Methanol- Enhanced Methanol, 1999. [10] m. Consortium, Identification of functional elements and regulatory circuits by Drosophila modENCODE., 330 (2010) 1787-1797. [11] R. Angamuthu, Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex, 2010. [12] S. Kaneco, Y. Ueno, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of CO2 in copper particle-suspended methanol, Chemical Engineering Journal, 119 (2006) 107-112. [13] N. Takahashi, The new concept 3-way catalyst for automotive lean-burn engine-NOx storage and reduction catalyst, 1996. [14] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2, Annu Rev Phys Chem, 63 (2012) 541-569. [15] W. Jiao, Recent progress in red semiconductor photocatalysts for solar energy conversion and utilization, 2016. [16] J. Hong, W. Zhang, J. Ren, R. Xu, Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods, Analytical Methods, 5 (2013) 1086. [17] K. Shimura, H. Yoshida, Heterogeneous photocatalytic hydrogen production from water and biomass derivatives, Energy & Environmental Science, 4 (2011) 2467. [18] J.R. Bolton, Solar fuels, Science, 202 (1978) 705-711. [19] X. Li, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, 2014. [20] X. Chen, Nanomaterials for renewable energy production and storage, 2012. [21] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chem Soc Rev, 43 (2014) 5234-5244. [22] J. Low, B. Cheng, J. Yu, M. Jaroniec, Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels, Energy Storage Materials, 3 (2016) 24-35. [23] V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, Energy & Environmental Science, 2 (2009) 745. [24] X. Chang, T. Wang, J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy & Environmental Science, 9 (2016) 2177-2196. [25] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew Chem Int Ed Engl, 52 (2013) 7372-7408. [26] Q. Huang, J. Yu, S. Cao, C. Cui, B. Cheng, Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4, Applied Surface Science, 358 (2015) 350-355. [27] Y. Liao, Z. Hu, Q. Gu, C. Xue, Amine-Functionalized ZnO Nanosheets for Efficient CO2 Capture and Photoreduction, Molecules, 20 (2015) 18847-18855. [28] H.L. Skriver, N.M. Rosengaard, Surface energy and work function of elemental metals, Physical Review B, 46 (1992) 7157-7168. [29] X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang, J. Ye, Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst, Chem Commun (Camb), 50 (2014) 11517-11519. [30] X. Li, Z. Zhuang, W. Li, H. Pan, Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2, Applied Catalysis A: General, 429-430 (2012) 31-38. [31] 雷敏宏;吳紀聖, 觸媒化學概論與應用, 2014. [32] R.D. Richardson, E.J. Holland, B.K. Carpenter, A renewable amine for photochemical reduction of CO2, Nature Chemistry, 3 (2011) 301. [33] F.E. Osterloh, B.A. Parkinson, Recent developments in solar water-splitting photocatalysis, MRS Bulletin, 36 (2011) 17-22. [34] J. YANG, Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis, 2012. [35] W.C. contributors, Solar spectrum en, Wikimedia Commons. [36] N.M. Dimitrijevic, B.K. Vijayan, O.G. Poluektov, T. Rajh, K.A. Gray, H. He, P. Zapol, Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania, J Am Chem Soc, 133 (2011) 3964-3971. [37] C.-C. Yang, Vernimmen, J, Meynen, V, Cool, P & Mul, Mechanistic study of hydrocarbon formation in photocatalytic CO2 reduction over Ti-SBA-15, 284 (2011) 1-8. [38]吳紀聖, 匡佳謙, 利用光觸媒處理CO2再利用技術, (2016) 18-37. [39] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37. [40] Z. Wei, F. Liang, Y. Liu, W. Luo, J. Wang, W. Yao, Y. Zhu, Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film, Applied Catalysis B: Environmental, 201 (2017) 600-606. [41] 蕭長青, 牟金祿, 陳俊瑜, 清潔生產技術--鐵礦燒結原料添加尿素可改善NOx, SOx之排放, 化工, (2000) 56-67. [42] A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chemical Reviews, 95 (1995) 735-758. [43] A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Su, B.-J. Hwang, Using hematite for photoelectrochemical water splitting: a review of current progress and challenges, Nanoscale Horizons, 1 (2016) 243-267. [44] D.P.B. Yet-Ming Chiang, W. David Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering, 1996. [45] X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Science China Materials, 57 (2014) 70-100. [46] S. Xie, Q. Zhang, G. Liu, Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures, Chem Commun (Camb), 52 (2016) 35-59. [47] Y.N. Tan, C.L. Wong, A.R. Mohamed, An Overview on the Photocatalytic Activity of Nano-Doped-TiO2 in the Degradation of Organic Pollutants, ISRN Materials Science, (2011) 1-18. [48] S. Wang, J.-H. Yun, B. Luo, T. Butburee, P. Peerakiatkhajohn, S. Thaweesak, M. Xiao, L. Wang, Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications, Journal of Materials Science & Technology, 33 (2017) 1-22. [49] S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res, 38 (2004) 3001-3008. [50] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 15 (2013) 1-20. [51] T. Chen, V.O. Rodionov, Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates, ACS Catalysis, 6 (2016) 4025-4033. [52] 廖怡婷, 摻雜金屬離子之二氧化鈦奈米顆粒及二氧化鈦/二氧化錫奈米複合材料的合成與鑑定, 2009. [53] J. Liebig, About some nitrogen compounds, Ann. Pharm, (1834). [54] F. Goettmann, Metal-free catalysis of sustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds, Chemical Communications, 2006. [55] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nature Materials, 8 (2008) 76. [56] E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll, A.D. Norman, Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation, New Journal of Chemistry, 26 (2002) 508-512. [57] Y. Wang, Y. Di, M. Antonietti, H. Li, X. Chen, X. Wang, Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids, Chemistry of Materials, 22 (2010) 5119-5121. [58] M.J. Bojdys, J.-O. Müller, M. Antonietti, A. Thomas, Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride, Chemistry - A European Journal, 14 (2008) 8177-8182. [59] B. Ju¨rgens, Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies, J. Am. Chem. Soc., (2003). [60] A. Sattler, S. Pagano, M. Zeuner, A. Zurawski, D. Gunzelmann, J.r. Senker, K. Müller-Buschbaum, W. Schnick, Melamineâ“Melem Adduct Phases: Investigating the Thermal Condensation of Melamine, Chemistry - A European Journal, 15 (2009) 13161-13170. [61] B.V. Lotsch, Schnick, W., From Triazines to Heptazines- Novel Nonmetal Tricyanomelaminates as Precursors for Graphitic Carbon Nitride Materials, Chemistry of Materials, 2006. [62] X. Wang, S. Blechert, M. Antonietti, Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis, ACS Catalysis, 2 (2012) 1596-1606. [63] D.J. Martin, P.J.T. Reardon, S.J.A. Moniz, J. Tang, Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System, Journal of the American Chemical Society, 136 (2014) 12568-12571. [64]Ye, C., Li, Z., J., Li, X.-B., Zhang, L-P., Xu, J., Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C3N4 for Photocatalytic O2 Evoluion, ACS Catalysis, 5 (2015) 6973-6979. [65] H. Li, Y. Liu, X. Gao, C. Fu, X. Wang, Facile Synthesis and Enhanced Visible-Light Photocatalysis of Graphitic Carbon Nitride Composite Semiconductors, ChemSusChem, 8 (2015) 1189-1196. [66] J. Lin, Z. Pan, X. Wang, Photochemical Reduction of CO2 by Graphitic Carbon Nitride Polymers, ACS Sustainable Chemistry & Engineering, 2 (2013) 353-358. [67] Z. Lin, X. Wang, Nanostructure Engineering and Doping of Conjugated Carbon Nitride Semiconductors for Hydrogen Photosynthesis, Angewandte Chemie International Edition, 52 (2013) 1735-1738. [68] J. Xu, S. Cao, T. Brenner, X. Yang, J. Yu, M. Antonietti, M. Shalom, Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry, Advanced Functional Materials, 25 (2015) 6265-6271. [69] Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction, ACS Nano, 9 (2015) 12480-12487. [70] Z. Yang, Y. Zhang, Z. Schnepp, Soft and hard templating of graphitic carbon nitride, Journal of Materials Chemistry A, 3 (2015) 14081-14092. [71] P. Niu, L. Zhang, G. Liu, H.-M. Cheng, Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities, Advanced Functional Materials, 22 (2012) 4763-4770. [72] H. Xiao, W. Wang, G. Liu, Z. Chen, K. Lv, J. Zhu, Photocatalytic performances of g-C3N4 based catalysts for RhB degradation: Effect of preparation conditions, Applied Surface Science, 358 (2015) 313-318. [73] C. Quintero, Carlos, J., Xu, Y.-J., Heterogeneous Photocatalysis: From Fundamentals to Green Applications., 2016. [74] P.M. Schaber, J. Colson, S. Higgins, D. Thielen, B. Anspach, J. Brauer, Thermal decomposition (pyrolysis) of urea in an open reaction vessel, Thermochimica Acta, 424 (2004) 131-142. [75] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, Journal of Materials Chemistry, 21 (2011) 14398. [76] F. Dong, Y. Li, Z. Wang, W.-K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation, Applied Surface Science, 358 (2015) 393-403. [77] F. Dong, Z. Wang, Y. Sun, W.-K. Ho, H. Zhang, Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity, Journal of Colloid and Interface Science, 401 (2013) 70-79. [78] W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability, Chemical Reviews, 116 (2016) 7159-7329. [79] J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis, ACS Applied Materials & Interfaces, 6 (2014) 16449-16465. [80] G. Zhang, J. Zhang, M. Zhang, X. Wang, Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts, Journal of Materials Chemistry, 22 (2012) 8083. [81] Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4 (2012) 5300. [82] D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Highly Efficient Photocatalytic H2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride, Angewandte Chemie International Edition, 53 (2014) 9240-9245. [83] P. Wang, S. Sun, X. Zhang, X. Ge, W. Lü, Efficient degradation of organic pollutants and hydrogen evolution by g-C3N4 using melamine as the precursor and urea as the modifier, RSC Advances, 6 (2016) 33589-33598. [84] B. Zhu, P. Xia, W. Ho, J. Yu, Isoelectric point and adsorption activity of porous g-C3N4, Applied Surface Science, 344 (2015) 188-195. [85] C.-T. Yang, W.W. Lee, H.-P. Lin, Y.-M. Dai, H.-T. Chi, C.-C. Chen, A novel heterojunction photocatalyst, Bi2SiO5/g-C3N4: synthesis, characterization, photocatalytic activity, and mechanism, RSC Advances, 6 (2016) 40664-40675. [86] Z. Zhao, Y. Sun, Q. Luo, F. Dong, H. Li, W.-K. Ho, Mass-Controlled Direct Synthesis of Graphene-like Carbon Nitride Nanosheets with Exceptional High Visible Light Activity. Less is Better, Scientific Reports, 5 (2015) 14643. [87] H. Wang, Z. Sun, Q. Li, Q. Tang, Z. Wu, Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420 nm UV light, Journal of CO2 Utilization, 14 (2016) 143-151. [88] B. Chai, X. Liao, F. Song, H. Zhou, Fullerene modified C3N4composites with enhanced photocatalytic activity under visible light irradiation, Dalton Trans., 43 (2014) 982-989. [89] J. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light, Journal of Materials Chemistry, 22 (2012) 15006. [90] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light, Advanced Materials, 25 (2013) 2452-2456. [91] G. Dong, L. Zhang, Porous structure dependent photoreactivity of graphitic carbon nitride under visible light, J. Mater. Chem., 22 (2012) 1160-1166. [92] Y. Huang, Y. Wang, Y. Bi, J. Jin, M.F. Ehsan, M. Fu, T. He, Preparation of 2D hydroxyl-rich carbon nitride nanosheets for photocatalytic reduction of CO2, RSC Advances, 5 (2015) 33254-33261. [93] K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Applied Catalysis B: Environmental, 176-177 (2015) 44-52. [94] T. Sano, S. Tsutsui, K. Koike, T. Hirakawa, Y. Teramoto, N. Negishi, K. Takeuchi, Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase, Journal of Materials Chemistry A, 1 (2013) 6489. [95] F. Dong, Z. Wang, Y. Li, W.-K. Ho, S.C. Lee, Immobilization of Polymeric g-C3N4 on Structured Ceramic Foam for Efficient Visible Light Photocatalytic Air Purification with Real Indoor Illumination, Environmental Science & Technology, 48 (2014) 10345-10353. [96] Z. Wang, W. Guan, Y. Sun, F. Dong, Y. Zhou, W.-K. Ho, Water-assisted production of honeycomb-like g-C3N4 with ultralong carrier lifetime and outstanding photocatalytic activity, Nanoscale, 7 (2015) 2471-2479. [97] G. Dong, L. Zhang, Porous structure dependent photoreactivity of graphitic carbon nitride under visible light, Journal of Materials Chemistry, 22 (2012) 1160-1166. [98] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, Journal of Materials Chemistry, 21 (2011) 14398-14401. [99] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, Journal of Materials Chemistry, 21 (2011) 15171-15174. [100] J. Mao, T. Peng, X. Zhang, K. Li, L. Ye, L. Zan, Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light, Catalysis Science & Technology, 3 (2013) 1253-1260. [101] M. Reli, P. Huo, M. Šihor, N. Ambrožová, I. Troppová, L. Matějová, J. Lang, L. Svoboda, P. Kuśtrowski, M. Ritz, P. Praus, K. Kočí, Novel TiO2/C3N4 Photocatalysts for Photocatalytic Reduction of CO2 and for Photocatalytic Decomposition of N2O, The Journal of Physical Chemistry A, 120 (2016) 8564-8573. [102] H. Shi, G. Chen, C. Zhang, Z. Zou, Polymeric g-C3N4 Coupled with NaNbO3 Nanowires toward Enhanced Photocatalytic Reduction of CO2 into Renewable Fuel, ACS Catalysis, 4 (2014) 3637-3643. [103] J. Yu, K. Wang, W. Xiao, B. Cheng, Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts, Physical Chemistry Chemical Physics, 16 (2014) 11492-11501. [104] T. Ohno, N. Murakami, T. Koyanagi, Y. Yang, Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light, Journal of CO2 Utilization, 6 (2014) 17-25. [105] W. Yu, D. Xu, T. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism, Journal of Materials Chemistry A, 3 (2015) 19936-19947. [106] Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu, L. Zhao, Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction, Solar Energy Materials and Solar Cells, 137 (2015) 175-184. [107] H. Li, S. Gan, H. Wang, D. Han, L. Niu, Intercorrelated Superhybrid of AgBr Supported on Graphitic-C3N4-Decorated Nitrogen-Doped Graphene: High Engineering Photocatalytic Activities for Water Purification and CO2 Reduction, Adv Mater, 27 (2015) 6906-6913. [108] Y. Huang, M. Fu, T. He, Synthesis of g-C3N4/BiVO4 Nanocomposite Photocatalyst and Its Application in Photocatalytic Reduction of CO2, Place Published, 2015. [109] J. Qin, S. Wang, H. Ren, Y. Hou, X. Wang, Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid, Applied Catalysis B: Environmental, 179 (2015) 1-8. [110] M. Li, L. Zhang, M. Wu, Y. Du, X. Fan, M. Wang, L. Zhang, Q. Kong, J. Shi, Mesostructured CeO2/g-C3N4 nanocomposites:Remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations, Nano Energy, 19 (2016) 145-155. [111] X. Zhang, L. Wang, Q. Du, Z. Wang, S. Ma, M. Yu, Photocatalytic CO2 reduction over B4C/C3N4 with internal electric field under visible light irradiation, Journal of Colloid and Interface Science, 464 (2016) 89-95. [112] Y. Bai, L. Ye, L. Wang, X. Shi, P. Wang, W. Bai, P.K. Wong, g-C3N4/Bi4O5I2 heterojunction with I3−/I− redox mediator for enhanced photocatalytic CO2 conversion, Applied Catalysis B: Environmental, 194 (2016) 98-104. [113] L. Ye, D. Wu, K.H. Chu, B. Wang, H. Xie, H.Y. Yip, P.K. Wong, Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction, Chemical Engineering Journal, 304 (2016) 376-383. [114] Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, X. Shi, W. Bai, Size-dependent role of gold in g-C3N4/BiOBr/Au system for photocatalytic CO2 reduction and dye degradation, Solar Energy Materials and Solar Cells, 157 (2016) 406-414. [115] H. Wang, Z. Sun, Q. Li, Q. Tang, Z. Wu, Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420nm UV light, Journal of CO2 Utilization, 14 (2016) 143-151. [116] Y. Wang, Y. Xu, Y. Wang, H. Qin, X. Li, Y. Zuo, S. Kang, L. Cui, Synthesis of Mo-doped graphitic carbon nitride catalysts and their photocatalytic activity in the reduction of CO2 with H2O, Catalysis Communications, 74 (2016) 75-79. [117] Y. Wang, X. Bai, H. Qin, F. Wang, Y. Li, X. Li, S. Kang, Y. Zuo, L. Cui, Facile One-Step Synthesis of Hybrid Graphitic Carbon Nitride and Carbon Composites as High-Performance Catalysts for CO2 Photocatalytic Conversion, ACS Applied Materials & Interfaces, 8 (2016) 17212-17219. [118] M. Li, L. Zhang, X. Fan, M. Wu, M. Wang, R. Cheng, L. Zhang, H. Yao, J. Shi, Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction, Applied Catalysis B: Environmental, 201 (2017) 629-635. [119] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity, Small, 13 (2017). [120] W.-J. Ong, L.K. Putri, Y.-C. Tan, L.-L. Tan, N. Li, Y.H. Ng, X. Wen, S.-P. Chai, Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study, Nano Research, 10 (2017) 1673-1696. [121] Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, Y. He, In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation, Journal of Materials Research, 32 (2017) 3660-3668. [122] 羅聖全, 科學基礎研究之重要利器-掃瞄式電子顯微鏡(SEM) 科學研習月刊, (5), 52-5. (2013). [123] 羅聖全, 研發奈米科技的基本工具之一電子顯微鏡介紹– TEM, 科學研習月刊, (6), 48-9. (2013) [124] D.B. Williams, Carter, C. B., Transmission Electron Microscopy., 2009. [125] Y.W. Chung, Introduction to Materials Science and Engineering, 2006. [126] J.P. Eberhart, Structural and Chemical Analysis of Materials: X-Ray, Electron and Neutron Diffraction; X-Ray, Electron and Ion Spectrometry; Electron Microscopy., 1991. [127] C. Weidenthaler, Pitfalls in the characterization of nanoporous and nanosized materials, Nanoscale, 3 (2011) 792-810. [128] S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, Springer Berlin Heidelberg, Place Published, 2013. [129] I.S.G. John C. Vickerman, Surface Analysis - The Principal Techniques, 2nd Edition, 2009. [130] J.R. Anderson, Pratt, K. C.,, Introduction to Characterization and Testing of Catalysts Academic Press, 1985. [131] 張立信, 表面化學分析技術, 奈米通訊, 19 (4) (2012) 17-23. [132] 陳俊龍, AES/ESCA 表面分析技術於工業材料上的應用, 106, (1995) 69-77. [133] 郭沁林. X射线光电子能谱[J]. 物理, 36 (5) (2007) 2-4. [134] Hufner, S., Photoelectron Spectroscopy Principles and Applications, 2003. [135] W.W. Wendlandt, Hecht, H. G., Reflectance spectroscopy, 1966. [136] H. McNair, INTRODUCTION TO GC, 2017. [137]Muhammad Tahir, Chuanbao Cao, Faheem K. Butt, Faryal Idrees, Nasir Mahmood, Zulfiqar Ali, Imran Aslam, M. Tanveer, Muhammad Rizwan and Tariq Mahmood, Tubular graphitic-C3N4: a prospective material for energy storage and green photocatalysis, J. Mater. Chem. A, 1(2013) 13949-13955. [138] A. Chithambararaj, N. Rajeswari Yogamalar, A.C. Bose, Hydrothermally Synthesized h-MoO3 and α-MoO3 Nanocrystals: New Findings on Crystal-Structure-Dependent Charge Transport, Crystal Growth & Design, 16 (2016) 1984-1995. [139] P. Nikulshin, A. Mozhaev, K. Maslakov, A. Pimerzin, V. Kogan, 2014 Nikulshin Appl Catal B, Place Published, 2014. [140] Z. Chen, J. Cao, L. Yang, W. Yin, X. Wei, The unique photocatalysis properties of a 2D vertical MoO2/WO2 heterostructure: a first-principles study, Journal of Physics D: Applied Physics, 51 (2018) 265106. [141] C. Zhengjie, C. Juexian, Y. Liwen, Y. Wenjin, W. Xiaolin, The unique photocatalysis properties of a 2D vertical MoO2 /WO2 heterostructure: a first-principles study, Journal of Physics D: Applied Physics, 51 (2018) 265106. [142] K. Lai, Y. Zhu, J. Lu, Y. Dai, B. Huang, N- and Mo-doping Bi2WO6 in photocatalytic water splitting, Computational Materials Science, 67 (2013) 88-92.
|