|
[1] R. Waser Nanotechnology, Volume 3: Information Technology I. Wiley (2008). [2] Pierre-Camille Lacaze, Jean-Claude Lacroix, “Non-nolatile Memories”, Wiley-ISTE publishers, Dec. 2014. [3] Yole Development, “Emerging non - volatile memory (NVM) technologies & markets 2015”, http://www.slideshare.net /Yole_Developpement/yole-emerging-nonvolatilememorysample. [4] F. Yinug, “The rise of the flash memory market: Its impact on firm behavior and global semiconductor trade patterns,” 2007. [5] S. N. Keeney, "A 130nm generation high density EtoxTM flash memory technology," in Tech. Dig. - Int. Electron Devices Meet., 2001, pp. 2.5.1 - 2.5.4. [6] A. Chen, S. Haddad, C. Y. Wu, “Nonvolatile resistive switching for advanced memory applications”, in Tech. Dig. - Int. Electron Devices Meet., 2005, pp. 746 - 749. [7] International technology roadmap for semiconductors 2013 edition emerging research devices," http://www.itrs.net/Links/2013ITRS/2013Tables/ERD_2013Tables.xlsx. [8] S. Raoux, R. M. Shelby, J. Jordan-Sweet, B. Munoz, M. Salinga, Y. C. Chen, Y. H. Shih, E. K. Lai, and M. H. Lee, "Phase change materials and their application to random access memory technology", Microelectron. Eng., vol. 85, pp. 2330-2333, 2008. [9] S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures”, Phys. Rev. Lett., Vol.21, pp. 1450-1454, 1968. [10] V. Giraud, J. Cluzel, V. Sousa, A. Jacquot, A. Dauscher, B. Lenoir, H. Scherrer, and S. Romer, "Thermal characterization and analysis of phase change random access memory," J. Appl. Phys., vol. 98, pp. 013520-7, 2005. [11] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and R. S. Shenoy, "Overview of candidate device technologies for storage-class memory," IBM J. Res. Dev., vol. 52, pp. 449-464, 2008. [12] Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwischt, A. Schrott, J. B. Philipps, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, and C. Lam, "Ultra-thin phase-change bridge memory device using GeSb," in Tech. Dig. - Int. Electron Devices Meet., San Francisco, CA, 2006, pp. 1-4. [13] R. E. Jones, P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu, and S. J. Gillespie, "Ferroelectric non-volatile memories for low-voltage, low-power applications", Thin Solid Film., vol. 270, pp. 584-588, 1995. [14] W. Xin Yi, Y. Jun, W. Yun Bo, Z. Wen Li, G. Jun Xiong, and C. Xiao Hui, "Preparation and characterization of BPO film as electrode for using of FeRAM", Chinese Phys. Lett., pp. 2694, 2008. [15] T. Mikolajick, C. Dehm, W. Hartner, I. Kasko, M. J. Kastner, N. Nagel, M. Moert, and C. Mazure, "FeRAM technology for high density applications", Microelectron. Reliab., vol. 41, pp. 947-950, 2001. [16] E. T. Wertz and Q. Li, "Magneto resistance after initial demagnetization in La0.67Sr0.33] MnO3/SrTiO3/La0.67Sr0.33MnO3 magnetic tunnel junctions", Appl. Phys. Lett., vol. 90, 142506, 2007. [17] Y. Ogimoto, M. Izumi, A. Sawa, T. Manako, H. Sato, H. Akoh, M. Kawasaki and Y. Tokura, "Tunneling magnetoresistance above room temperature in La0.7Sr0.3MnO3/SrTiO3/La0.7Sr0.3MnO3 junctions", Jpn. J. Appl. Phys., vol. 42, pp. L369-L372, 2003. [18] W. F. Cheng, A. Ruotolo, Y. K. Chan, K. H. Wong, and C. W. Leung, "Spacerless metal-manganite pseudo-spin-valve structure", J. Appl. Phys., vol. 103, p. 103903, 2008. [19] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater., vol. 6, pp. 833-840, 2007. [20] A. Prakash, D. Jana and S. Maikap, "TaOx-based resistive switching memories: prospective and challenges," Nanoscale Res. Lett., vol. 8, p. 418, 2013. [21] H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, and M. J. Tsai, "Evidence and solution of over-RESET problem for HfOx based resistive memory with sub-ns switching speed and high endurance," Tech. Dig. - Int. Electron Devices Meet., San Francisco, CA, 2010, pp. 19.7.1-19.7.4. [22] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, "Sub-nanosecond switching of a tantalum oxide memristor," Nanotechnology, vol. 22, p. 485203, 2011. [23] J. J. Yang, D. B. Strukov, and D. R. Stewart, "Memristive devices for computing," Nat. Nanotechnol., vol. 8, pp. 13-24, 2013. [24] T. W. Hickmott, "Low-frequency negative resistance in thin anodic oxide films," J. Appl. Phys., vol. 33, pp. 2669-2682, 1962. [25] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal – Oxide RRAM,” IEEE Proceedings, vol. 100, no. 6, pp. 1951 – 1970, June 2012. [26] D. Acharyya, A. Hazra, P. Bhattacharyya, “A journey towards reliability improvement of TiO2 based Resistive Random Access Memory: A review,” Microelectronics Reliability, vol. 54, pp. 541 – 560, Jan. 2014. [27] A. Sawa, "Resistive switching in transition metal oxides," Mater. Today, vol. 11, pp. 28-36, 2008. [28] Y. S. Chen, H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, F. Chen, M. J. Tsai, and C. Lien, "An ultrathin forming-free HfOx resistance memory with excellent electrical performance," IEEE Electron Device Lett., vol. 31, pp. 1473-1475, 2010. [29] W. Banerjee, S. Z. Rahaman, and S. Maikap, "Excellent uniformity and multilevel operation in formation-free low power resistive switching memory using IrOx/AlOx/W cross-point," Jpn. J. Appl. Phys., vol. 51, pp. 04DD10-6, 2012. [30] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges," Adv. Mater., vol. 21, pp. 2632-2663, 2009. [31] M. -J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U. I. Chung, I.-K. Yoo, and K. Kim, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures," Nat. Mater., vol. 10, pp. 625-630, 2011. [32] R. Muenstermann, T. Menke, R. Dittmann, R. Waser, “Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices”, Adv. Mat., vol. 22, pp. 4819, 2010. [33] H. Jiang, X. Y. Li, R. Chen, X. L. Shao, J. H. Yoon, X. Hu, C. S. Hwang & J. Zhao, “Bias-polarity-dependent resistance switching in W/SiO2/Pt and W/SiO2/Si/Pt structures”, Scientific Reports, vol. 6, pp. 22216, Feb. 2016. [34] W. Kim, S. Menzel, D. J. Wouters, Member IEEE, R. Waser, Member IEEE, and V. Rana, “3-Bit multi level switching by deep reset phenomenon in Pt/W/TaOX/Pt-ReRAM devices”, IEEE Electron Devices Lett., vol. 37, no. 5, May 2016. [35] X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen and X. Cheng, "Forming-free colossal resistive switching effect in rare-earth oxide Gd2O3 films for memristor application," J. App. Phys., vol. 106, pp. 073723-5, 2009. [36] J. Robertson., "High dielectric constant oxides," Eur. Phys. J. Appl. Phys., vol. 28, pp. 265–291, 2014. [37] N. Birks, G.H. Meier, F.S Pettit: Introduction to the high-temperature oxidation of metals. Cambridge: Cambridge University Press; 2006. http://www.doitpoms. ac.uk/tlplib/ellingham_diagrams/interactive.php. [38] J. A. Dean, "LANGE'S HANDBOOK OF CHEMISTRY," McGRAW-HILL (2008). [39] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbe, B. Garrido, R. Rizk and A. J. Kenyon, “Resistive switching in silicon suboxide films”, J. Appl. Phys., vol. 111, no. 074507, April 2012. [40] R. Zhang, T.-M. Tsai, T.-C. Chang, K.-C. Chang, K.-H. Chen, J.-C. Lou, T.-F. Young, J.-H. Chen, S.-Y. Huang, M.-C. Chen, C.-C. Shih, H.-L. Chen, J.-H. Pan, C.-W. Tung, Y.-E. Syu, and S. M. Sze, “Mechanism of power consumption inhibitive multi-layer Zn:SiO2/SiO2 structure resistance random access memory”, J. Appl. Phys., vol. 114, no. 234501, Dec. 2013. [41] S. Kim, S. Cho, B. G. Park, “Improved resistive switching properties in SiOx-based resistive random-access memory cell with Ti buffer layer”, J. Vac. Sci. Technol. B, vol. 34, no. 022204, March 2016. [42] W. K. Hsieh, K. T. Lam, S. J. Chang, “Asymmetric resistive switching characteristics of In2O3:SiO2 co-sputtered thin film memories”, J. Vac. Sci. Technol. B, vol. 32, no. 020603, Feb. 2014. [43] K.-C. Chang, J. W. Huang, T.-C. Chang, T.-M. Tsai, K.-H. Chen, T.-F. Young, J.-H. Chen, R. Zhang, J.-C. Lou, S.-Y. Huang, Y. C. Huang, Y.-E. Syu, D. S. Gan, D. H. Bao, and S. M. Sze, “Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer”, Nanoscale Res. Lett., vol. 8, no. 523, 2013.
[44] K.-H. Chen, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S. P. Liang, T.-F. Young, Y.-E. Syu and S. M. Sze, “Illumination effect on bipolar switching properties of Gd:SiO2 RRAM devices using transparent indium tin oxide electrode”, Nanoscale Res. Lett., vol. 11, no. 224, 2016. [45] E. Linn, R. Rosezin, C. Kugeler and R. Waser, “Complementary resistive switches for passive nanocrossbar memories”, Nat. Mater., vol. 9, pp. 403 – 406, April 2010. [46] Y. T. Tseng, T.-M. Tsai, T.-C. Chang, C. C. Shih, K.-C. Chang, R. Zhang, K.-H. Chen, J.-H. Chen, Y. C. Li, C. Y. Lin, Y. C. Huang, Y.-E. Syu, J. C. Zheng, and S. M. Sze, “Complementary resistive switching behavior induced by varying forming current compliance in resistive random access memory”, Appl. Phys. Lett., vol. 106, no. 213505, May 2015. [47] D. H. Lim, G. Y. Kim, J. H. Song, K. S. Jeong, D. H. Ko and M. H. Cho, “ Filament geometry induced bipolar, complementary and unipolar resistive switching under the same set current compliance in Pt/SiOx/TiN”, Scientific Reports, vol. 5, no. 15374, Oct. 2015. [48] D. Jana, S. Samanta, S. Maikap and H. – M. Cheng, “Evolution of complementary resistive switching characteristics using IrOx/GdOx/Al2O3/TiN structure”, Appl. Phys. Lett., vol. 108, no. 011605, Jan. 2016. [49] S. Schmelzer, E. Linn, U. Bottger and R. Waser, “Uniform complementary resistive switching in tantalum oxide using current sweeps”, IEEE Electron Device Lett., vol. 34, no. 1, Jan. 2013. [50] K. J. Yoon, S. J. Song, J. Y. Seok, J. H. Yoon, T. H. Park, D. E. Kwon and C. S. Hwang, “Evolution of the shape of the conducting channel in complementary resistive switching transition metal oxides”, Nanoscale, vol. 6, pp. 2161 – 2169, 2014. [51] W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang,Y. H. Shih, K. Y. Hsieh, and R. Liu, “Unipolar Switching Behaviors of RTO WOX RRAM”, IEE Electron Device Lett., vol. 31, no. 2, February 2010. [52] A. Prakash, S. Maikap, C.S. Lai, T.C. Tien, W.S. Chen, H.Y. Lee, F.T. Chen , M.-J. Kao, and M.-J. Tsai, “Bipolar resistive switching memory using bilayer TaOx/WOx films”, Solid-State Electronics, vol. 77, pp. 35-40, 2012. [53] A. Mehonic, M. Buckwell, L. Montesi, L. Garnett, S. Hudziak, S. Fearn, R. Chater, D. McPhail, and A. J. Kenyon, “Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory”, J. Appl. Phys., vol. 117, no. 145505, 2015. [54] Z. Li, and Y. Zhu , “Surface-modification of SiO2 nanoparticles with oleic acid”, Appl. Surface Sci., vol. 211, pp. 315-320, 2003. [55] D. Ielmini, F. Nardi, abd C. Cagli, “Universal resest characteristics of unipolar and bipolar metal-oxide RRAM”, IEEE Transaction on Electron Devices, vol. 58, no. 10, 2011. [56] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices”, John Wiley & Sons. Inc , 3rd edition, 2007. [57] M. Lenzlinger and E. H. Snow, “Fowler‐Nordheim tunneling into thermally grown SiO2”, J. Appl. Phys., vol. 40, no. 278, 1969. [58] D. A. Neaman, “Semiconductor Physics and Devices”, Mc.Graw Hill Companies . Inc , 4th edition , 2012. [59] N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials” , Oxford University Press, 1979. [60] K. H. Chen, R. Zhang, T. C. Chang, T. M. Tsai, K. C. Chang, J. C. Lou, T.F. Young, J. H. Chen, C. C. Shih, C. W. Tung, Y. E. Syu, and S. M. Sze, “Hopping conduction distance dependent activation energy characteristics of Zn:SiO2 resistance random access memory devices”, Appl. Phys. Lett. Vol. 102, no. 133503, 2013. [61] A. Prakash, S. Maikap, W. Banerjee1, D. Jana, and C. S. Lai, “Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials”, Nanoscale Res. Lett., vol. 8, no. 379, 2013. [62] W. Banerjee, S. Maikap, C. S. Lai, Y. Y. Chen, T. C. Tien, H. Y. Lee, W. S. Chen, F. T. Chen, M.J. Kao, M. J. Tsai , and J. R. Yang, “Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots”, Nanoscale Res. Lett., vol. 7, no. 194, 2012. [63] A. Prakash, S. Maikap, S. Z. Rahaman, S. Majumdar, S. Manna and S. K. Ray, “Resistive switching memory characteristics of Ge/GeOx nanowires and evidence of oxygen ion migration”, Nanoscale Res. Lett., vol. 8, no. 220, 2013. [64] P.J. Freud, “Electric-field-dependent conductivity for hopping-type charge transport”, vol.29, no. 17, 1972. [65] C. Y. Ng, T. P. Chen, Y. Liu, and C. Q. Sun, “Influence of nitrogen on tunneling barrier heights and effective masses of electrons and holes at lightly-nitrided SiO2 /Si interface”, J. Appl. Phys., vol. 96, no. 10, Nov. 2004. [66] W. C. Lee, C. Hu, “Modeling gate and substrate currents due to conduction- and valence-band electron and hole tunneling”, IEEE Symposium on VLSI, pp. 198 -199, 2000. [67] R. Degraeve, A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y.Y. Chen, D.J. Wouters, Ph. Roussel, G.S. Kar, G. Pourtois, S. Cosemans, J.A. Kittl, G. Groeseneken, M. Jurczak, L. Altimime, “Dynamic ‘Hour Glass’ model for SET and RESET in HfO2 RRAM”, IEEE Symposium on VLSI Technology, pp. 75 -76, 2012.
|