跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏憲
研究生(外文):Huang, Po-Hsien
論文名稱:結合阻抗鎖定迴路之數位式低壓降線性穩壓器用以改善先進製程之低電源雜訊抑制能力
論文名稱(外文):A Resistance-Locked Loop Embedded Digital Low Dropout Regulator for Improving the Power Supply Rejection in Advance CMOS Technology
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:74
中文關鍵詞:低壓降線性穩壓器阻抗鎖定迴路電源雜訊抑制
外文關鍵詞:Low dropout regulatorResistance locked loopPower supply rejection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著近年來半導體技術與消費市場的快速發展,單一功能的電子產品已無法滿足大部分消費者的期待。尤以可攜式裝置如智慧型手機、平板電腦等應用,因應更多功能整合於單晶片的趨勢,電源管理積體電路設計儼然成為不可或缺的一環。本研究專注於數位式低壓降線性穩壓器的開發工作,透過適當的電路設計技巧以達到低功耗、高電源雜訊抑制能力,以及可於低壓操作的電源管理模組。
傳統類比式操作的低壓降線性穩壓器多仰賴負迴授的機制穩定輸出電壓。為了使類比電路能夠正常操作,其輸入電壓通常需要較高的準位。舉常用的互補式金氧半導體製程為例,當輸入電壓低於一伏特時,多種堆疊結構的電路設計即不再適用,其原因為偏壓電路的設計將變得較為困難,使得這種類的電路設計需要更高深的設計技巧,對於非類比專業的設計師而言,將耗費更多的成本與開發時間。此外,隨著邏輯/混合訊號製程的演進,造成先進製程如深次微米,以至於奈米製程的世代,其元件開關的臨界電壓與元件額定操作電壓的比值逐漸上升,操作電壓也隨著開發過程逐漸下降等現象。這意味著當人們追求更高密度,更快速度的同時,也必須注意到這樣的發展趨勢對於電路設計所造成的衝擊。尤其是電源管理系統之設計,如何在這樣的發展趨勢下持續提供使用彈性,使得單一設計在未來開發的平台上持續適用,是吾們值得研究的課題。
本論文提出一結合阻抗鎖定迴路之數位式低壓降線性穩壓器,其目標為提供一高品質的電壓輸出供給後端電路使用。穩壓器核心採用數位雙向非同步波導管架構,可使電路操作於更低電壓並解決傳統數位控制器需要外部時脈訊號的麻煩,且於暫態響應事件結束後,最小化靜態電流的消耗。新加入的阻抗鎖定迴路,可協助輸出端抵抗來自切換式電壓轉換器的切換雜訊,提供更穩定電壓輸出。矽晶片樣本由聯電四零奈米製程實現,實驗結果證實此架構能達到約77%的雜訊抑制效果,最低操作電壓可達0.6伏特並正確提供0.4伏特的輸出準位。
In recent years, rapid growth of the semiconductor technology and electronic devices continuously enriches our daily life. Conventional single-function products gradually fade out from the market because those cannot satisfy the consumers’ expectations anymore. Especially for the portable devices such as smart phones and tablet PCs, power management integrated circuits (PMICs) become an essential block to deal with the various requirements from different circuits on silicon chips. This thesis focuses on digital low dropout regulator designs. Low-power, high power supply rejection (PSR), and capable of working under low-voltage environment power management module can be achieved through deliberated circuit designs.
In general, most of analog low dropout regulators rely on the negative feedback mechanism to stabilize the output voltage. To make analog circuit working properly, the input voltage needs a relative high level. Taking the CMOS technologies as an example, when the input voltage falls below one volt, several stacking architectures like cascode stages are no longer useful. Biasing scheme becomes extremely difficult and therefore it increases the design effort. Besides, with the progress of the logic/mix-mode technologies, the ratio of transistor threshold voltage to nominal supply gradually increases. The supply voltage is also decreased to prevent the device from being damaged in deep sub-micron and nano-scale technologies. This trend forces us to consider the impact of the process evolution during the design jobs.
This thesis proposes a resistance-locked loop embedded digital low dropout regulator to improve the PSR in advanced CMOS technologies. The bidirectional asynchronous wave pipeline architecture doesn’t need the external clock reference and thus the quiescent current can be minimized in steady-state. Moreover, the controller can work under a very lower input voltage. The ratio of the output voltage to input supply can be improved to avoid unnecessary loss. As for the resistance locked loop, it helps the output node free from noise generated by the switching regulator, providing a high quality output for the loading. The test chip was fabricated in UMC 40nm low-power CMOS process. Experimental results show a 77% noise suppression. The minimum supply voltage can be down to 0.6V and a 0.4 V regulated output can be guaranteed.
Chapter 1 1
Introduction 1
1.1 Background of Regulators 1
1.2 Categorization of Power Supply Circuit 3
1.2.1 Linear Regulators 3
1.2.2 Switching Capacitor Circuits 4
1.2.3 Switching Regulators 6
1.2.4 Comparison of Power Supply Circuit 8
1.3 Design Motivation 10
1.4 Thesis Organization 16
Chapter 2 17
Basic Operating Principles of the Conventional Low-dropout Regulators 17
2.1 General Specifications 17
2.1.1 Dropout Voltage 18
2.1.2 Efficiency 19
2.1.3 Load/Line Regulation 20
2.1.4 Power Supply Rejection (PSR) 21
2.1.5 Transient Response 24
2.2 Conventional LDO Regulators 27
2.2.1 Study on the Pass Transistors 27
2.2.2 External Compensated LDO Regulators 29
2.2.3 On-chip Compensated LDO Regulators 31
2.2.4 Digital Controlled LDO Regulators 33
Chapter 3 34
Proposed Digital LDO Regulator with Resistance Locked Loop 34
3.1 Operation of the Synchronous Control Digital LDO Regulators 34
3.2 Proposed Power Delivery Scheme for the Sub-threshold SoC System 37
3.2.1 Bidirectional Asynchronous Wave Pipeline 38
3.2.2 Resistance Locked Loop 41
Chapter 4 43
Operation of the Resistance Locked Loop 43
4.1 Concept of the Resistance Locked Loop 43
4.2 Psuedo Ramp Current Technique 45
4.3 Duty Compensator 48
4.4 Stability Analysis for the RLL 50
Chapter 5 53
Circuit Implementation of the Resistance Locked Loop 53
5.1 Resistance Error Detector 53
5.2 Duty Compensator 56
5.3 Voltage-controlled Oscillator and Shift Register 58
Chapter 6 60
Experimental Results 60
6.1 Simulation Results 60
6.2 Measured Results and Chip Micrograph 64
Chapter 7 69
Conclusions and Future Work 69
7.1 Conclusions 69
7.2 Future Work 70
Reference 71

[1] Hong-Wei Huang, Chia-Hsiang Lin, and Ke-Horng Chen, “Low-dropout regulators with adaptive reference control and dynamic push-pull techniques for enhancing transient performance,” IEEE Trans. Power Electron., vol.24, no.4, pp.1016-1022, Sept. 2013
[2] Huan-JenYang, Han-Hsiang Huang, Chi-Lin Chen, Ming-Hsin Huang, and Ke-Horng Chen, “Current feedback compensation (CFC) technique for adaptively adjusting the phase margin in capacitor-free LDO regulators,” in Proc. 51st IEEE Int. Midwest Symp. Circuits &; Systems, pp.5-8, Aug. 2008.
[3] Yung-Hsin Lin, Kuo-Lin Zheng, and Ke-Horng Chen, “Power MOSFET array in LDO regulator compensation,” in Proc. 50th IEEE Int. Midwest Symp. Circuits &; Systems, pp.554-557, Aug. 2008.
[4] P. Favrat, P. Deval and M. J. Declercq, ”A high-efficiency CMOS voltage doubler,” IEEE J. Solid-State Circuits, vol. 33, pp. 410-416, March 1998.
[5] Starzyk, J.A, Ying-Wei Jan and Fengjing Qiu, “A DC-DC charge pump design based on voltage doublers,” IEEE Trans. Circuits and Systems I, vol. 48, pp. 350-359, Mar. 2001.
[6] Chun-Yu Hsieh, Po-Chin Fan and Ke-Horng Chen, “A dual phase charge pump with compact size,” in Proc. 14th IEEE Int. Conf. Electron., Circuits &; Syst., pp.202-205, Dec. 2007.
[7] Yean-Kuo Luo, Ke-Horng Chen, and Wei-Chou Hsu, “A dual-phase charge pump regulator with nano-ampere switched-capacitor CMOS voltage reference for achieving low output ripples,” in Proc. 15th IEEE Int. Conf. Electron., Circuits &; Syst., pp.446-449, Sep. 2008.
[8] Cheung Fai Lee, Philip K. T. “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits. vol. 39, pp.3-13, Jan. 2004.
[9] Chi Yat Leung, Philip K.T. Mok, “A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp.2265-2274, Nov. 2005.
[10] Ming-Hsin Huang, Ke-Horng Chen, and Wei-Hsin Wei “Single-inductor dual-output DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices,” in Proc. IEEE Symp. VLSI Circuits (VLSIC), pp.132-133, June 2008.
[11] Hong-Wei Huang, Hsin-Hsin Ho, Chieh-Ching Chien, Ke-Horng Chen, Gin-Kou Ma, and Sy-Yen Kuo, “Dithering skip modulator with a width controller for ultra-wide-load high-efficiency DC-DC converters,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp.643-646 ,Sep. 2006.
[12] Yu-Huei Lee, Shih-Jung Wang, Chun-Yu Hsieh, and Ke-Horng Chen, “Current mode DC-DC buck converters with optimal fast-transient control,” in Proc. IEEE Int. Symp. Circuits Syst., May. 2008.
[13] Chris A. Mack, "Fifty years of Moore's law,” IEEE Trans. Semiconductor Manufacturing, vol.24, no.2, pp.202-207, May 2011
[14] Dake Liu and Christer Svensson, "Trading speed for low power by choice of supply and threshold voltages," IEEE J. Solid-State Circuits, vol.28, no.1, pp.10-17, Jan 1993
[15] Scott Hanson, Bo Zhai, Mingoo Seok, Brian Cline, Kevin Zhou, Meghna Singhal, Michael Minuth, Javin Olson, Leyla Nazhandali, Todd Austin, Dennis Sylvester, David Blaauw, "Performance and variability optimization strategies in a sub-200mV, 3.5pJ/inst, 11nW subthreshold processor," in Proc. IEEE Symp. VLSI Circuits (VLSIC), pp.152-153, June 2007.
[16] Amit Agarwal, Sanu K Mathew, Steven K Hsu, Mark A Anders, Himanshu Kaul, Farhana Sheikh, Rajaraman Ramanarayanan, Suresh Srinivasan, Ram Krishnamurthy, Shekhar Borkar, "A 320mV-to-1.2V on-die fine-grained reconfigurable fabric for DSP/media accelerators in 32nm CMOS," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp.328-329, Feb. 2010.
[17] Benton H. Calhoun and Anantha P. Chandrakasan, "Ultra-dynamic voltage scaling (UDVS) using sub-threshold operation and local voltage dithering," IEEE J. Solid-State Circuits, vol.41, no.1, pp.238-245, Jan. 2006.
[18] B. H. Calhoun and A. Chandrakasan, “Characterizing and modeling minimum energy operation for subthreshold circuits,” in Proc. IEEE Int. Symp. Low Power Electronics and Design (ISLPED), pp. 90-95, 2004.
[19] Yasuyuki Okuma, Koichi Ishida, Yoshikatsu Ryu, Xin Zhang, Po-Hung Chen, Kazunori Watanabe, Makoto Takamiya, and Takayasu Sakurai, "0.5-V input digital LDO with 98.7% current efficiency and 2.7-µA quiescent current in 65nm CMOS," in Proc. IEEE Custom Integrated Circuits Conf. (CICC), pp.1-4, Sept. 2010.
[20] Yu-Huei Lee, Shen-Yu Peng, Chao-Chang Chiu, Alex Chun-Hsien Wu, Ke-Horng Chen, Ying-Hsi Lin, Shih-Wei Wang, Tsung-Yen Tsai,Chen-Chih Huang, and Chao-Cheng Lee, "A low quiescent current asynchronous digital-LDO with PLL-modulated fast-DVS power management in 40 nm SoC for MIPS performance improvement," IEEE J. Solid-State Circuits, vol.48, no.4, pp.1018-1030, April 2013.
[21] P. Hazucha, S. T. Moon, G. Schrom, F. Paillet, D. Gardner, S. Rajapandian, and T. Karnik, “High voltage tolerant linear regulator with fast digital control for biasing of integrated DC-DC converters,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 66-73, Jan. 2007.
[22] M. Onouchi, K. Otsuga, Y. Igarashi, T. Ikeya, S. Morita, K. Ishibashi, and K. Yanagisawa, “A 1.39-V input fast-transient-response digital LDO composed of low-voltage MOS transistors in 40-nm CMOS process,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 37-40, Nov. 2011.
[23] K. Hirairi, Y. Okuma, H. Fuketa, T. Yasufuku, M. Takamiya, M. Nomura, H. Shinohara, and T. Sakurai, “13% power reduction in 16 b integer unit in 40 nm CMOS by adaptive power supply voltage control with parity-based error prediction and detection (PEPD) and fully integrated digital LDO,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 486–487, Feb. 2012.
[24] Hong-Wei Huang, Chia-Hsiang Lin, and Ke-Horng Chen, "A programmable dual hysteretic window comparator," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp.1930-1933, May 2008.
[25] Yat-Hei Lam, Wing-Hung Ki, "A 0.9V 0.35μm adaptively biased CMOS LDO regulator with fast transient response," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp.442-626, Feb. 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top