|
[1] 顧寶而, 多壁奈米碳管對於聚氨酯塗層之抗蝕及水下吸音特性影響之研究, 國立台灣大學, 2017. [2] M. Jablonski and R. Hb, Novel Photo-Fenton Oxidation with Sand and Carbon Filtration of High Concentration Reactive Dyes both with and without Biodegradation, 2016. [3] S. E. E. a. B. R.A., Fundamentals of Electrochemical Corrosion. ASM Int., Ohio, USA, 2000. [4] B. N. Popov, Corrosion Engineering (Pitting and Crevice Corrosion). Elsevier: Amsterdam, 2015. [5] W.-M. Tian, Y. J. Ai, S. M. Li, N. Du, and C. Ye, Pitting Kinetics of 304 Stainless Steel Using ESPI Detection Technique, Acta Metallurgica Sinica, journal article vol. 28, no. 4, 430-437, 2015. [6] 王朝正, 柯賢文, 腐蝕及其防制, 全華圖書, 2014. [7] D. D. Kopeliovich, Crevice corrosion, Subtance and techonologies, 2012. [8] 李忠縈, 離岸風機防蝕塗層性質監測技術之開發及應用, 國立台灣大學, 2016. [9] D. D. Kopeliovich, Galvanic corrosion, Subtance and techonologies, 2012. [10] L.R. F. A. J. Bard, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications New York, 1980. [11] 李瀅, SAE8620合金應力腐蝕特性之研究, 國立台灣大學, 2007. [12] E.McCafferty, Thermodynamics of Corrosion: Pourbaix Diagrams, Introduction to Corrosion Science, Springer New York, 2010. [13] E.McCafferty, Getting Started on the Basics, Introduction to Corrosion Science, Springer New York, 2010. [14] M. Stern, A. L. Geary, Electrochemical Polarization: I . A Theoretical Analysis of the Shape of Polarization Curves, Journal of The Electrochemical Society, 1957. [15] M.G. Fontana, Corrosion engineering, Tata McGraw-Hill Education, 2005. [16] D.G. Enos, L.L. Scribner, The potentiodynamic polarization scan, Solartron Instruments, Hampshire, UK, Technical Report, 1997. [17] Y.M. Tan, R.W. Revie, Heterogeneous electrode processes and localized corrosion, John Wiley & Sons, 2012. [18] E.McCafferty, Concentration Polarization and Diffusion, Introduction to Corrosion Science, Springer New York, 2010. [19] E. McCafferty, Crevice Corrosion and Pitting, Introduction to Corrosion Science, Springer New York, 2010. [20] A. Poursaee, Determining the appropriate scan rate to perform cyclic polarization test on the steel bars in concrete, Electrochimica Acta, 2010. [21] Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 2016. [22] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, JOM, 67(10) 2254-2261, 2015. [23] S. Wang, Atomic Structure Modeling of Multi-Principal-Element Alloys by the Principle of Maximum Entropy, Entropy, 15(12) 5536, 2013. [24] J.W.Y. Michael C. Gao, Peter K. Liaw, Yong Zhang, High-Entropy Alloys Fundamentals and Applications, 2016. [25] D. B. Miracle, O. N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122, 448-511, 2017. [26] M. H. Tsai, J. W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters 2(3), 107-123, 2014. [27] R. Dehoff, Thermodynamics in materials science, Taylor & Francis, 2011. [28] J. W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, JOM 65 (12), 1759-1771,2013. [29] P. Gordon, Principles of phase diagrams in materials systems, McGraw Hill, 1968. [30] J. W. Yeh, Recent progress in high-entropy alloys, 2006. [31] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metallurgical and Materials Transactions A, journal article 35(5) 1465-1469, 2004. [32] E. J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews 61(3), 183-202, 2016. [33] Y. Zhang, T.T. Zuo, Z.Tang, M. Gao, K. Dahmen, P. Liaw, Z.P. Lu, Microstructures and Properties of High-entropy Alloys, 2013. [34] 葉均蔚, 高熵合金的發展, 華岡工程學報, 2011. [35] C.H.W.C.P.Lee, U.S.Chen, J.W.Yeh, H.C.Shih, Comparative Studies of the Corrosion Behavior of the Al0.5CoCrFeMo0.5Ni High Entropy Alloy and Type 316 Stainless Steel, Journal of Chinese Corrosion Engineering, 22(2), 111 -120, 2008. [36] Y. J. Hsu, W. C. Chiang, J.K. Wu, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Materials Chemistry and Physics 92(1) 112-117, 2005. [37] C. C. C. Y. H .Li, J. W. Yeh, H. C. Shih, Corrosion Property Studies of High Entropy Alloy Al0.3CrMnFe1.5Nix in Sulfuric Acids, Journal of Chinese Corrosion Engineering, 25(2) 107-116, 2011. [38] X. W. Qiu, C. G. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding, Journal of Alloys and Compounds 553 216-220, 2013. [39] H. C. Shih, C. P. Lee, Y. Y. Chen, C. H. Wu, C. Y. Hsu, J. W. Yeh, Effect of Boron on the Corrosion Properties of Al0.5CoCrCuFeNiBx High Entropy Alloys in 1N Sulfuric Acid, ECS Transactions, 2(26), 15-33, 2007. [40] C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, and H. C. Shih, "Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments,Corrosion Science, 50(7), 2053-2060, 2008. [41] Y. L. Chou, J. W. Yeh, and H. C. Shih, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosion Science, 52(8), 2571-2581, 2010. [42] A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting corrosion behaviour of austenitic stainless steels – combining effects of Mn and Mo additions, Corrosion Science, 50(6) 1796-1806, 2008. [43] Q. Ye, K Feng, Z. Li, F. Lu, R. Li, J. Huang, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Applied Surface Science,396 1420-1426, 2017. [44] H. Luo, Z. Li, A. M. Mingers, D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corrosion Science, 134 131-139, 2018. [45] 劉振宇, 張維娜, 王國棟, 高錳TWIP/TRIP鋼研究發展與應用, 中國工程科學, 2014. [46] L. P. Kuanhui Hu, Lijun Li, Jieping Tian, Latest Progress in Development of Cold-Rolled Complex Phase Steel, Metallurgical Engineering 3, 2016. [47] O. Bouaziz, N. Guelton, Modelling of TWIP effect on work-hardening, Materials Science and Engineering: A,319-321, 246-249, 2001. [48] L. P. Wang, Yu-chang, Li Yang, Zhang Jia-quan, Effect of Alloying Elements on Mechanical Behavior of Fe-Mn-C TWIP Steel, Journal of Materials Engineering, 43(9), 30-38, 2015. [49] Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, C. C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off," Nature 534 227, 2016. [50] Z. Li, C. C. Tasan, K. G. Pradeep, and D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior, Acta Materialia 131 323-335, 2017. [51] H. Luo, Z. Li, and D. Raabe, Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy, Scientific Reports 7(1), 2017. [52] M. Laurent-Brocq, A Akhatova, L. Perriere, S. Chebini, X. Sauvage, E. Leroy, Insights into the phase diagram of the CrMnFeCoNi high entropy alloy, Acta Materialia, 88 355-365, 2015. [53] L. Li, C. F. Dong, K. Xiao, J. Z. Yao, and X. G. Li, Effect of pH on pitting corrosion of stainless steel welds in alkaline salt water, Construction and Building Materials, 68 709-715, 2014. [54] H. Luo, C. F. Dong, X. G. Li, K. Xiao, The electrochemical behaviour of 2205 duplex stainless steel in alkaline solutions with different pH in the presence of chloride, Electrochimica Acta, 64 211-220, 2012. [55] B. Basu, Corrosionand Degradation of Implantable Biomaterials," in Biomaterials for Musculoskeletal Regeneration: Concepts, B. Basu, Ed. Singapore: Springer Singapore, 2017, pp. 253-289. [56] Y. X. Qiao, Y. G. Zheng, P. C. Okafor, and W. Ke, Electrochemical behaviour of high nitrogen bearing stainless steel in acidic chloride solution: Effects of oxygen, acid concentration and surface roughness, Electrochimica Acta, 54(8), 2298-2304, 2009. [57] E. Bardal, Corrosion and protection. Springer Science & Business Media, 2007. [58] H. H. Uhlig, Passivity in metals and alloys, Corrosion Science 19(7) 777-791, 1979. [59] 许立宁, 朱金阳, 王贝, Cr 含量和 pH 值对低铬管线钢半钝化行为的影响, 金属学报, 53(6) 677-683, 2017. [60] J. Zhu, L. Xu, M. Lu, L. Zhang, and W. Chang, Interaction effect between Cr(OH)3 passive layer formation and inhibitor adsorption on 3Cr steel surface, RSC Advances 5(24) 18518-18522, 2015. [61] 艾莹珺, 赵晴,黄世新,王力强,文庆杰, 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响, 中国腐蚀与防护学报37(2) 135-141, 2017. [62] G. Debernardi, C. Carlesi Jara, Chemical Electrochemical Approaches to the Study Passivation of Chalcopyrite, 2011. [63] C. Della Rovere, J. Alano, J. Otubo, and S. E. Kuri, Corrosion behavior of shape memory stainless steel in acid media, 2011. [64] C.-S. Lin and W.-J. Li, Corrosion Resistance of Cerium-Conversion Coated AZ31 Magnesium Alloys in Cerium Nitrate Solutions, Materials Transactions 47(4) 1020-1025, 2006. [65] P. Ernst, N. J. Laycock, M. H. Moayed, and R. C. Newman, The mechanism of lacy cover formation in pitting, Corrosion Science, 39(6) 1133-1136, 1997. [66] B. C. Maji, C. M. Das, M. Krishnan, R. K. Ray, The corrosion behaviour of Fe–15Mn–7Si–9Cr–5Ni shape memory alloy, Corrosion Science 48 (4) 937-949, 2006. [67] Y. Q. Wang, B. Yang, J. Han, H. C. Wu, and X. T. Wang, Effect of Precipitated Phases on the Pitting Corrosion of Z3CN20.09M Cast Duplex Stainless Steel, Materials Trasactions 54 (5) 839-843, 2013. [68] U. Trdan, J. Grum, SEM/EDS characterization of laser shock peening effect on localized corrosion of Al alloy in a near natural chloride environment, Corrosion Science, 82 328-338, 2014. [69] Y. S. Zhang, X. M. Zhu, Electrochemical polarization and passive film analysis of austenitic Fe–Mn–Al steels in aqueous solutions, Corrosion Science 41(9) 1817-1833, 1999. [70] M. Opiela, A. Grajcar, W. Krukiewicz, Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution, Journal of Achievements in Materials and Manufacturing Engineering, 33(2) 159-165, 2009. [71] 李佳憲, AISI201及444不銹鋼之孔蝕敏感性比較研究, 國立台灣大學, 2016. [72] X. Wu et al., Investigation on Pitting Corrosion of Nickel-Free and Manganese-Alloyed High-Nitrogen Stainless Steels," Journal of Materials Engineering and Performance 18(3) 287-298, 2009. [73] C. O. A. Olsson and D. Landolt, Passive films on stainless steels—chemistry, structure and growth, Electrochimica Acta 48 (9) 1093-1104, 2003. [74] A. Kocijan, Č. Donik, and M. Jenko, Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions, Corrosion Science 49 (5) 2083-2098, 2007. [75] E. P. Rajiv, A. Iyer, and S. K. Seshadri, Corrosion characteristics of cobalt-silicon nitride electro composites in various corrosive environments, Materials Chemistry and Physics 40(3) 189-196, 1995. [76] A. M. Human, B. Roebuck, H. E. Exner, Electrochemical polarisation and corrosion behaviour of cobalt and Co(W,C) alloys in 1 N sulphuric acid, Materials Science and Engineering: A, 241(1) ,202-210, 1998. [77] J. R. Davis, Alloy digest sourcebook: stainless steels, ASM international, 2000. [78] B. B. Olefjord I, Quantitative ESCA analysis of the passive state of an Fe-Cr-alloy and Fe-Cr-Mo alloy, Passivity of Metals and Semiconductors, 1983. [79] N. Mazinanian, G. Herting, I. O. Wallinder, and Y. Hedberg, Metal Release and Corrosion Resistance of Different Stainless Steel Grades in Simulated Food Contact, Corrosion 72(6) 775-790, 2016.
|