|
[1] M. Kebriaei, A. H. Niasar, B. Asaei, “Hybrid Electric Vehicles: An Overview”, International Conference on Connected Vehicles and Expo (ICCVE), Oct. 2015. [2] D. D. C. Lu and V. G. Agelidis, “Photovoltaic-Battery-Powered DC Bus System for Common Portable Electronic Devices,” IEEE Trans. Power Electrons., vol. 24, no. 3, pp. 849-855, Mar. 2009. [3] M. Yilmaz, P. T. Krein, “Review of Charging Power Levels and Infrastructure for Plug-In Electric and Hybrid Vehicles and Commentary on Unidirectional Charging,” 2012 IEE Intranational Electrical Vehicle Conference (IEVC 2012), Mar. 2012. [4] R. M. Schupbach and J. C. Balda, “Comparing DC–DC Converters for Power Management in Hybrid Electric Vehicles,” in Proc. IEMDC, Jun. 2003, vol. 3, pp. 1369–1374. [5] P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy, Y. Liu, “Energy Storage Systems for Advanced Power Applications,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1744-1756, Dec. 2001. [6] Y. Tsuruta and A. Kawamura, “QRAS and SAZZ Chopper for HEV Drive Application,” in Proc. PCC, Nagoya, Japan, Apr. 2007, pp. 1260–1267. [7] M. Anun, M. Ordonez, I. Galiano and G. Oggier, “Bidirectional Power Flow with Constant Power Load in Electric Vehicles: A Non-linear Strategy for Buck+Boost Cascade Converters,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2014, pp. 1697–1703. [8] K. Chong-Eun, H. Sang-Kyoo, Y. Kang-Hyun, L. Woo-Jin, and M. Gun-Woo, “A New High Efficiency ZVZCS Bi-Directional DC/DC Converter for 42V Power System of HEVs,” in Proc. IEEE PESC, Recife, Brazil, Sep. 2005, pp. 792–797. [9] V. V. S. K Bhajana, S. R. Reddy, “A Novel ZVS-ZCS Bidirectional DC-DC Converter for Fuel Cell and Battery Application,” on IEEE PEDS 2009, pp. 12-17. [10] F. Z. Peng, Li Hui, Su Gui-Jia, J. S. Lawler, “A New ZVS Bidirectional DC-DC Converter for Fuel Cell and Battery Application,” Trans. Power Electronics, vol. 19, pp. 54-65, 2004. [11] F. Caricchi, F. Crescimbiri, and A. Di Napoli, “20 kW Water-Cooled Prototype of a Buck–Boost Bidirectional DC–DC Converter Topology for Electrical Vehicle Motor Drives,” in Proc. IEEE APEC, Mar. 1995, vol. 2, pp. 887–892 [12] D. H. Kim and B. K. Lee, “An Enhanced Control Algorithm for Improving the Light-Load Efficiency of Non-inverting Synchronous Buck-Boost Converters,” IEEE Trans. Power Electrons., vol. 31, no. 5, May 2016. [13] Y.J. Lee, A. Khaligh, A. Chakraborty, A. Emadi, “Digital Combination of Buck and Boost Converters to Control a Positive Buck-Boost Converter and Improve the Output Transients,” Trans. Power Electronics, vol. 24, pp. 1267-1279, 2009. [14] L. Solero, D. Boroyevich, Y. P. Li, and F. C. Lee, “Design of Resonant Circuit for Zero-Current-Transition Techniques in 100-kW PEBB Applications,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1783–1794, Nov. 2003. [15] C. M. Young, Y. S. Cheng, B. R. Peng, S. H. Chi and Z. Z. Yang, “Design and Implementation of a High-Efficiency Bidirectional DC-DC Converter,”Future Energy Electronics Conference (IFEEC) 2015 IEEE 2nd International, pp. 1-5, 2015. [16] Y. E. Wu, K. C. Huang, M. X. Li, “A Bidirectional DC/DC Converter Charge/Discharge Controller for Solar Energy Illumination System Integrating Synchronous Rectification SEPIC Converter and Active Clamp Flyback Converter, ” International Journal of Circuit Theory and Applications, vol. 44, no.2, pp. 305-327, Apr. 2015. [17] S. Waffler, J.W. Kolar, “A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck+Boost Converters,” IEEE Trans. Power Electrons., vol. 24, no. 6, June 2009. [18] Zhao Biao, Song Qiang, Liu Wenhua, and Sun Yangdong, ‘Overview of Dual-Active-Bridge Isolated Bidirectional DC–DC Converter for High-Frequency-Link Power-Conversion System’, IEEE Trans. Power Electron., pp. 4091 - 4106 Vol. 29, Issue: 8, Aug. 2014. [19] Alonso, A. R., Sebastian, J., Lamar, D. G., Hernando, M. M., and Vazquez, A., ‘An overall study of a dual active bridge for bidirectional dc/dc conversion’, Proc. ECCE, pp.1129 -1135, 2010. [20] Harrye Yasen, A. and Ahmed, K. H. ‘Reactive Power Minimization of Dual Active Bridge DC/DC Converter with Triple Phase Shift Control using Neural Network’, International Conference on Renewable Energy Research and Applications, pp. 566-571. [21] Kuiyuan, W., De Silva, C. W., and Dunford, W. G., ‘Stability Analysis of Isolated Bidirectional Dual Active Full-Bridge DC-DC Converter with Triple Phase-Shift Control’, IEEE Trans. Power Electron., vol. 27, pp. 2007-2017, 2012. [22] Shi, H. C., Wen, H. Q., Chen, J., Hu, Y. H., Jiang, L., Chen, G. P., ‘Minimum Reactive Power Scheme of Dual Active Bridge DC-DC Converter with Three-Level Modulated Phase-Shift Control’, IEEE. Trans. Industry Applications, vol. 53, pp. 5573-5586, 2017. [23] Zhao Biao,Yu Qingguang and Sun Weixin, ‘Bi-directional Full-bridge DC-DC Converters with Dual-phase-shifting Control and Its Backflow Power Characteristic Analysis’, Proceedings of the CSEE, 2012. 32(012):43-50. [24] Choi, W., Rho, K. M., and Cho, B. H., ‘Fundamental Duty Modulation of Dual-Active-Bridge Converter for Wide-Range Operation’, IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4048-4064, 2016. [25] Higa, H., Itoh, J. I., ‘Extension of Zero-Voltage Switching Range in Dual Active Bridge Converter by Switched Auxilary Inductance’, IEEE Energy Conversion Congress and Exposition, pp. 5324- 5331, 2017. [26] Krismer, F. and Kolar, J. W. ‘Efficiency-optimized high current dual active bridge converter for automotive applications’, IEEE Trans. Ind. Electron., 2011. [27] Ortiz, G., Biela, J., Bortis, D., and Kolar, J. W., ‘1 Megawatt, 20 kHz, isolated, bidirectional 12kV to 1.2kV dc-dc converter for renewable energy applications’, International Power Electronics Conference (IPEC), 2010, pp. 3212-3219, Jun. 2010. [28] Hua Bai, C. Mi, "Eliminate Reactive Power and Increase System Efficiency of Isolated Bidirectional Dual-Active-Bridge DC-DC Converters Using Novel Dual-Phase-Shift Control," IEEE Trans. Power Electron., vol.23, no.6, pp.2905-2914, Nov. 2008. [29] Zhiyu Shen, Burgos, R., Boroyevich, D., and Wang, F., ‘Soft-switching capability analysis of a dual active bridge dc-dc converter’, Electric Ship Technologies Symposium, 2009. ESTS 2009. IEEE, vol., no., pp.334-339, 20-22 April 2009. [30] Zhou Haihua, A.M. Khambadkone, "Hybrid Modulation for Dual Active Bridge Bi-Directional Converter with Extended Power Range for Ultra-capacitor Application," Industry Applications Society Annual Meeting, 2008. IAS '08. IEEE, pp.1-8, 5-9 Oct. 2008. [31] K. Tytelmaier, O. Husev, O. Veligorskyi, R. Yershov, "A review of non-isolated bidirectional DC-DC converters for energy storage systems", Int. Young Scientists Forum on Applied Physics and Engineering (YSF), pp. 22-28, 2016. [32] M. A. Sofla, L. Wang, "Control of dc-dc bidirectional converters for interfacing batteries in microgrids", Proc. of IEEE Power Systems Conf. and Exposition, March 20–23, 2011. [33] M. Godoy Simões, C.L. Lute, A.N. Alsaleem, D.I. Brandao, J. A. Pomilio, "Bidirectional floating interleaved buck-boost DC-DC converter applied to residential PV power systems", Proc. of IEEE Power Systems Conference, Mar. 10–13, 2015. [34] J. Zhang, J.-S. Lai, R.-Y. Kim, W. Yu, "High-power density design of a soft-switching high-power bidirectional DC- DC converter", IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1145-1153, July 2007. [35] Il-Oun Lee, Shin-young Cho, Gun-Woo Moon, "Interleaved Buck Converter having low switching losses and improved step-down conversion ratio", IEEE 8th International Power Electronics-ECCE Asia, The Shilla Jeju, Korea, pp. 2136-2143, Jun. 2011. [36] Ratil H. Ashique, Zainal Salam, Mohd Junaidi Abdul Aziz, "A high gain soft switching non-isolated bidirectional DC-DC converter", Power and Energy (PECon) 2016 IEEE International Conference on, pp. 417-422, 2016. [37] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” IEEE PESC, vol. 1 pp.147-234, 2001. [38] M. Ahmadi, K. Shenai, “New, Efficient, Low-Stress Buck/Boost Bidirectional DC- DC Converter,” Energy Tech 2012 IEEE, pp. 1-6, 2012. [39] F. C. Lee, “High-Frequency Quasi-Resonant and Multi-Resonant Converter Technologies,” IEEE IECON, pp. 509-521, 1988. [40] P. Thumalla, Z. Zhang, M. A. E. Andersen, “High Voltage Bi-directional Flyback Converter for Capacitive Actuator,” 15th European Conference on Power Electronics and Applications (EPE), pp. 1-10, 2013. [41] D. M. Divan, L. Malesani, P. Tenti, and V. Toigo, “A Synchronized Resonant DC Link Converter for Soft-Switched PWM,” IEEE Trans. Ind. Appl., vol. 29, no. 2, pp. 940–948, Sep. 1993. [42] R. Gurunathan and A. K. S. Bhat, “Zero-Voltage Switching DC Link Single Phase Pulse Width-Modulated Voltage Source Inverter,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1610–1618, Sep. 2007. [43] R. W. De Doncker, D. M. Divian, M. H. Kheraluwala, “A Three Phase Soft- Switched High Power Density DC/DC Converter for High Power Applications,” in Conf. Rec. IEEE IAS Annu. Meeting, Pittsburgh, PA, Oct. 2-7, 1998, pp. 796-805. [44] Y. Li and F. C. Lee, “A Comparative Study of a Family of Zero-Current Transition Schemes for Three-Phase Inverter Applications,” in Proc. IEEE APEC, Mar. 2001, vol. 2, pp. 1158–1164. [45] D. D. Nguyen, D. T. Nguyen and G. Fujita, “Dual Active Bridge Series Resonant Converter: A New Control Strategy Using Phase-Shifting Combined Frequency Modulation,” IEEE Trans. Power Electron., pp.1215-1222, 2015. [46] Z. Wang and H. Li, “Three-Phase Bidirectional DC-DC Converter with Enhanced Current Sharing Capability,” IEEE ECCE, pp.1116-1122, 2010. [47] Z. Wang and H. Li, “A Soft Switching Three-Phase Current-Fed Bidirectional DC-DC Converter with High Efficiency Over a Wide Input Voltage Range,” IEEE Trans. Power Electron., pp.669-684, 2012. [48] A. Mohammadpour, T. Li and L. Parsa, “Three-Phase Current-Fed Zero Current Switching Phase-Shift PWM DC-DC Converter,” IEEE Trans. Power Electron., 2014. [49] Y. K. Lo, J. Y. Lin, C. Y. Lin, “Analysis and Design of a Half-Bridge LLC Series Resonant Converter Employing two Transformers,” International Journal of Circuit Theory and Applications, pp. 985-998, 2011. [50] Y. K. Lo, J. Y. Lin, "Active-Clamping ZVS Flyback Converter Employing Two Transformers", IEEE Trans. on Power Electron., vol. 22, no. 6, pp. 2416-2423, Nov. 2007. [51] H. M. O. Filho, D. S. Oliveira Jr. and P. P. Praca, “Steady-State Analysis of a ZVS Bidirectional Isolated Three-Phase DC-DC Converter Using Dual-Phase-Shift Control with Variable Duty Cycle,” IEEE Trans. Power Electron. , pp.1863-1872, 2016. [52] D. V. Ghodke, K. Chatterjee, and B. G. Fernandes, “Three-Phase Three-Level, Soft Switched, Phase Shifted PWM DC-DC Converter for High Power Applications,” IEEE Trans. Power Electron., pp.1214-1227, 2008. [53] H. Hoek, M. Neubert and R. W. De Doncker, “Enhanced Modulation Strategy for a Three-Phase Dual Active Bridge Boosting Efficiency of an Electric Vehicle Converter,” IEEE Trans. Power Electron., pp.5499-5507, 2013. [54] H. M. O. Filho, D. S. Oliveira Jr. and C. E. Silva, “ZVS Bidirectional Isolated Three-Phase DC-DC Converter with Dual Phase-Shift and Variable Duty Cycle,”IEEE IAS, pp.1-8, 2012. [55] J. Huang, Y. Wang, Z. Li, Y. Jiang and W. Lei, “Simultaneous PWM Control to Operate the Three-Phase Dual Active Bridge Converter Under Soft Switching in the Whole Load Range,” IEEE APEC, pp.2885-2891, 2015. [56] R. Mirzahosseini and F. Tahami, “A Phase-Shift Three-Phase Bidirectional Series Resonant DC-DC Converter,” IECON, pp.1137-1143, 2011. [57] M. Rakesh, P. S. Satya, A. Pramond, “Design and Implementation of Three-Phase Resonant DC-DC Converter for Low-Voltage High-Current Applications,” Journal of Electric Power Components and Systems, vol. 42, pp. 1249-1265, 2014. [58] M. B. E. Kattel, R. Mayer, S. V. G. Oliveira, “A Three Phase Flyback Current-Fed Push-Pull Bidirectional DC-DC Converter for DC Microgrid Application,” IEEE International Conf. Industry Applications, Mar. 2016.
|