跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俊麟
研究生(外文):Chun-Lin Liu
論文名稱:NS3 N369突變所引發之製造病毒能力的缺失並非肇因於登革病毒NS2B/NS3切割結構蛋白的不足
論文名稱(外文):DENV NS2B/NS3 Structural Protein Cleavage Insufficiency Is Not the Cause of NS3 N369 Mutation-induced Virus Production Defect
指導教授:吳惠南
指導教授(外文):Huey-Nan Wu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:26
中文關鍵詞:登革病毒NS2BNS3
外文關鍵詞:Dengue virusNS2BNS3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
登革病毒非結構蛋白3 (NS3) 由蛋白水解酶區與解螺旋酶區所組成。NS3蛋白水解酶需與NS2B形成複合體以切割病毒多聚蛋白,NS3解螺旋酶則可促使RNA結構改變,這兩個酵素活性對於病毒複製是必須的。然而目前對於登革病毒NS3蛋白,在病毒組裝和釋出過程中所扮演的角色所知甚微。先前藉著在哺乳動物BHK-21細胞中表達登革病毒全基因體RNA的研究發現一些位於NS3蛋白「解螺旋酶區」N369胺基酸的置換突變株在未顯著影響病毒RNA複製能力的情況下,竟然無法製造出具有感染力的病毒,這也進一步指出NS3蛋白應參與在病毒的製程裡,而這個鮮被報導的現象,即是本研究探討NS3的最初動機。意外的是,一個位在NS3「蛋白水解酵素區」的N158Y適應性突變可成功地讓特定N369突變株製造具有感染力的病毒。有鑑於此,我聚焦在NS2B/NS3的蛋白水解功能,探討NS3 N369突變能否透過NS2B/NS3複合體影響病毒多聚蛋白鏈的切割 (含核殼Core結構蛋白的熟成以及除NS1蛋白外所有非結構蛋白的切割) 而喪失製造病毒的能力。一些實驗結果顯示NS3 N369不同的突變並不會影響NS2B/NS3在切割非結構蛋白的活性,因此暗示問題可能發生在核殼蛋白無法熟成或效率不彰。在本研究中我利用可持續表達NS3 N369突變蛋白之登革次基因體複製子(subgenomic replicon)的細胞株大量表達登革病毒結構蛋白,以檢視病毒結構蛋白的切割和核殼蛋白的熟成過程。螢光免疫染色和西方墨點分析的結果顯示,無論是能夠或不能夠製造出具有感染力病毒的NS3 N369突變蛋白或是伴隨著NS3 N158Y適應性突變的NS3 N369突變蛋白,催化核殼蛋白熟成的能力與野生型NS3蛋白相比並無顯著差異。總結,NS3 N369置換突變所引發之製造具感染力病毒能力的缺失,並非肇因於NS3蛋白水解酶與解螺旋酶的功能喪失。未來將需要更多的研究來解答此因果關係,而我們也將探討病毒組裝和釋出的過程是否受到NS3 N369置換突變的影響。
Dengue virus (DENV) non-structural protein 3 (NS3) is comprised of protease and helicase domains. NS3 protease is co-factored with NS2B to process viral polyprotein, whereas NS3 helicase facilitates RNA structural re-arrangements. Both protease and helicase activities of DENV NS3 are indispensable for viral replication, whereas it is not clear if DENV NS3 has a role in virus assembly and egress. Previous studies of DENV full-length (FL) infectious RNA in mammalian BHK-21 cells revealed that several NS3 “helicase” domain N369 mutants are replication-competent but fail to produce infectious virus, suggesting that NS3 participates in virus production. Of note, an adaptive mutation of the NS3 “protease” domain (N158Y) has been shown to rescue some N369 mutants, enabling them to produce infectious virus. This prompted me to investigate further the role of NS3 in infectious virus production. Here, I aimed to investigate the mechanism of how the NS3 N369 mutation impairs virus production, with a focus on the NS2B/NS3 protease function. Several experiments have shown that different NS3 N369 mutations do not affect the non-structural protein processing activity of NS2B/NS3, which suggests impairment or inefficiency of core protein maturation of NS3 N369 mutants. In this study, I overexpressed DENV structural proteins in stable cell lines harboring an NS3 N369 mutant DENV subgenomic replicon to examine viral structural protein processing and core protein maturation. Immunofluorescence and immunoblotting assays showed that the core protein maturation capabilities of different NS3 N369 mutants, as well as those with the NS3 N158Y adaptive mutation, were not significantly different from that of the wild type NS3. Thus, NS3 N369 mutation-induced virus production defects may not be caused by impairment of NS3 protease or helicase functioning. Overall then, the cause-and-effect mechanism behind the defective phenotype remains unanswered and needs more investigation. It would be informative to examine if the process of virus assembly and egress is affected under an NS3 N369 mutant background.
CONTENTS
Contents I
致謝 II
中文摘要 III
ABSTRACT IV
LIST of TABLES, FIGURES and APPENDIXES V
ABBREVIATIONS VI
1. INTRODUCTION 1
1.1 Dengue virus 1
1.2 DENV life cycle 1
1.3 DENV genome structure and viral protein function 1
1.4 Virus production defect of NS3 N369 mutants and rescue activity of NS3 N158Y 3
1.5 NS2B/NS3-mediated structural protein cleavage of C-CI 3
1.6 Specific aims 4
2. MATERIALS AND METHODS 5
2.1 Viral genes and cells 5
2.2 NS3 N369 SGR stable cell lines 5
2.3 Mini-expression cassettes of structural proteins 5
2.4 In vitro RNA transcription and RNA electroporation 6
2.5 Immunofluorescence assay 6
2.6 Immunoblotting analysis 7
2.7 Antibodies 7
3. RESULTS 9
3.1 Characterization of NS3 mutant SGR stable cell lines 9
3.2 Mini-expression cassettes for viral structural protein expression 9
3.3 V5-C-HA is not a substrate of NS2B/NS3 and accumulates in the nucleolus 10
3.4 V5-C-CI-HA is not completely ER-anchored and is only partially cleaved by
NS2B/NS3 11
3.5 V5-C-CI-prM-HA demonstrates structural protein cleavage 12
3.6 All NS3 mutants have sufficient structural protein cleavage ability 12
3.7 Translation of mini-RNA does not alter protein expression patterns of SGR cell lines 13
4. DISCUSSION 14
5. REFERENCES 15
6. TABLE 18
7. FIGURES 19
8. APPENDIX 26
Amberg SM and Rice CM. 1999. Mutagenesis of the NS2B-NS3-Mediated Cleavage Site in the Flavivirus Capsid Protein Demonstrates a Requirement for Coordinated Processing. J Virol 73: 8083-8094.
Arias CF, Preugschat F and Strauss JH. 1993. Dengue 2 Virus NS2B and NS3 Form a Stable Complex That Can Cleave NS3 within the Helicase Domain. Virology 193: 888-899.
Ashour J, Laurent-Rolle M, Shi PY and García-Sastre A. 2009. NS5 of Dengue Virus Mediates STAT2 Binding and Degradation. J Virol 83: 5408-5418.
Balsitis SJ, Coloma J, Castro G, Alava A, Flores D, McKerrow JH, Beatty PR and Harris E. 2009. Tropism of Dengue Virus in Mice and Humans Defined by Viral Nonstructural Protein 3-Specific Immunostaining. Am J Trop Med Hyg 80: 416-424.
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, et al. 2013. The Global Distribution and Burden of Dengue. Nature 496: 504-507.
Chambers TJ, Hahn CS, Galler R and Rice CM. 1990. Flavivirus Genome Organization, Expression, and Replication. Annu Rev Microbiol 44: 649-688.
Chambers TJ, Nestorowicz A, Amberg SM and Rice CM. 1993. Mutagenesis of the Yellow Fever Virus NS2B Protein: Effects on Proteolytic Processing, NS2B-NS3 Complex Formation, and Viral Replication. J Virol 67: 6797-6807.
Chaterji S, Allen JC, Chow A, Leo YS and Ooi EE. 2011. Evaluation of the NS1 Rapid Test and the WHO Dengue Classification Schemes for Use as Bedside Diagnosis of Acute Dengue Fever in Adults. Am J Trop Med Hyg 84: 224-228.
Chiang PY and Wu HN. 2016. The Role of Surface Basic Amino Acids of Dengue Virus NS3 Helicase in Viral RNA Replication and Enzyme Activities. FEBS Lett 590: 2307-2320.
Chung KM, Liszewski MK, Nybakken G, Davis AE, Townsend RR, Fremont DH, Atkinson JP and Diamond MS. 2006. West Nile Virus Nonstructural Protein NS1 Inhibits Complement Activation by Binding the Regulatory Protein Factor H. Proc Natl Acad Sci USA 103: 19111-19116.
Egloff MP, Benarroch D, Selisko B, Romette JL and Canard B. 2002. An RNA Cap (nucleoside‐2′‐O‐)‐Methyltransferase in the Flavivirus RNA Polymerase NS5: Crystal Structure and Functional Characterization. EMBO 21: 2757.
Gebhard LG, Filomatori CV and Gamarnik AV. 2011. Functional RNA Elements in the Dengue Virus Genome. Viruses 3: 1739-1756.
Gebhard LG, Iglesias NG, Byk LA, Filomatori CV, De Maio FA and Gamarnik AV. 2016. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production. J Virol 90: 5451-5461.
Gould EA and Solomon T. 2008. Pathogenic Flaviviruses. The Lancet 371: 500-509.
Gubler DJ and Clark GG. 1995. Dengue/Dengue Hemorrhagic Fever: the Emergence of a Global Health Problem. Emerg Infect Dis 1: 55-57.
Guy B, Lang J, Saville M and Jackson N. 2016. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med 67: 387-404.
Guzman MG and Harris E. 2015. Dengue. The Lancet 385: 453-465.
Hiscox JA. 2007. RNA Viruses: Hijacking the Dynamic Nucleolus. Nat Rev Micro 5: 119-127.
Hsu YC, Chen NC, Chen PC, Wang CC, Cheng WC and Wu HN. 2012. Identification of a Small-Molecule Inhibitor of Dengue Virus using a Replicon System. Arch Virol 157: 681-688.
Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey SE and Bisaillon M. 2009. The Flavivirus NS5 Protein is a True RNA Guanylyltransferase that Catalyzes a Two-Step Reaction to Form the RNA Cap Structure. RNA 15: 2340-2350.
Lambrechts L, Scott TW and Gubler DJ. 2010. Consequences of the Expanding Global Distribution of Aedes albopictus for Dengue Virus Transmission. PLoS Negl Trop Dis 4: e646.
Leung JY, Pijlman GP, Kondratieva N, Hyde J, Mackenzie JM and Khromykh AA. 2008. Role of Nonstructural Protein NS2A in Flavivirus Assembly. J Virol 82: 4731-4741.
Lobigs M and Lee E. 2004. Inefficient Signalase Cleavage Promotes Efficient Nucleocapsid Incorporation into Budding Flavivirus Membranes. J Virol 78: 178-186.
Lobigs M, Lee E, Ng ML, Pavy M and Lobigs P. 2010. A Flavivirus Signal Peptide Balances the Catalytic Activity of Two Proteases and Thereby Facilitates Virus Morphogenesis. Virology 401: 80-89.
Luo D, Xu T, Hunke C, Grüber G, Vasudevan SG and Lescar J. 2008. Crystal Structure of the NS3 Protease-Helicase from Dengue Virus. J Virol 82: 173-183.
Mackenzie JS, Gubler DJ and Petersen LR. 2004. Emerging Flaviviruses: the Spread and Resurgence of Japanese Encephalitis, West Nile and Dengue Viruses. Nat Med 10: S98-109.
Martina BEE, Koraka P and Osterhaus ADME. 2009. Dengue Virus Pathogenesis: an Integrated View. Clin Microbiol Rev 22: 564-581.
Matusan AE, Pryor MJ, Davidson AD and Wright PJ. 2001. Mutagenesis of the Dengue Virus Type 2 NS3 Protein Within and Outside Helicase Motifs: Effects on Enzyme Activity and Virus Replication. J Virol 75: 9633-9643.
McLean JE, Wudzinska A, Datan E, Quaglino D and Zakeri Z. 2011. Flavivirus NS4A-induced Autophagy Protects Cells against Death and Enhances Virus Replication. J Biol Chem 286: 22147-22159.
Messina JP, Brady OJ, Scott TW, Zou C, Pigott DM, Duda KA and Hay SI. 2014. Global Spread of Dengue Virus Types: Mapping the 70 Year History. Trends Microbiol 22: 138-146.
Miller S, Kastner S, Krijnse-Locker J, Bühler S and Bartenschlager R. 2007. The Non-Structural Protein 4A of Dengue Virus Is an Integral Membrane Protein Inducing Membrane Alterations in a 2K-regulated Manner. J Biol Chem 282: 8873-8882.
Mota J and Rico-Hesse R. 2011. Dengue Virus Tropism in Humanized Mice Recapitulates Human Dengue Fever. PLoS One 6: e20762.
Muñoz-Jordán JL, Sánchez-Burgos GG, Laurent-Rolle M and García-Sastre A. 2003. Inhibition of Interferon Signaling by Dengue Virus. Proc Natl Acad Sci USA 100: 14333-14338.
Mustafa MS, Rasotgi V, Jain S and Gupta V. 2015. Discovery of Fifth Serotype of Dengue Virus (DENV-5): A New Public Health Dilemma in Dengue Control. Med J Armed Forces India 71: 67-70.
Nestorowicz A, Chambers TJ and Rice CM. 1994. Mutagenesis of the Yellow Fever Virus NS2A/2B Cleavage Site: Effects on Proteolytic Processing, Viral Replication, and Evidence for Alternative Processing of the NS2A Protein. Virology 199: 114-123.
Netsawang J, Noisakran S, Puttikhunt C, Kasinrerk W, Wongwiwat W, Malasit P, Yenchitsomanus PT and Limjindaporn T. 2010. Nuclear Localization of Dengue Virus Capsid Protein is Required for DAXX Interaction and Apoptosis. Virus Res 147: 275-283.
Niyomrattanakit P, Winoyanuwattikun P, Chanprapaph S, Angsuthanasombat C, Panyim S and Katzenmeier G. 2004. Identification of Residues in the Dengue Virus Type 2 NS2B Cofactor That Are Critical for NS3 Protease Activation. J Virol 78: 13708-13716.
Póvoa TF, Alves AMB, Oliveira CAB, Nuovo GJ, Chagas VLA and Paes MV. 2014. The Pathology of Severe Dengue in Multiple Organs of Human Fatal Cases: Histopathology, Ultrastructure and Virus Replication. PLoS One 9: e83386.
Perera R and Kuhn RJ. 2008. Structural Proteomics of Dengue Virus. Curr Opin Microbiol 11: 369-377.
Roby JA, Setoh YX, Hall RA and Khromykh AA. 2015. Post-Translational Regulation and Modifications of Flavivirus Structural Proteins. J Gen Virol 96: 1551-1569.
Salvetti A and Greco A. 2014. Viruses and the Nucleolus: The Fatal attraction. Biochim Biophys Acta 1842: 840-847.
Sangiambut S, Keelapang P, Aaskov J, Puttikhunt C, Kasinrerk W, Malasit P and Sittisombut N. 2008. Multiple Regions in Dengue Virus Capsid Protein Contribute to Nuclear Localization during Virus Infection. J Gen Virol 89: 1254-1264.
Screaton G, Mongkolsapaya J, Yacoub S and Roberts C. 2015. New Insights into the Immunopathology and Control of Dengue Virus Infection. Nat Rev Immunol 15: 745-759.
Shi PY. 2012. Molecular Virology and Control of Flaviviruses. Caister Academic Press.
Stocks CE and Lobigs M. 1998. Signal Peptidase Cleavage at the Flavivirus C-prM Junction: Dependence on the Viral NS2B-3 Protease for Efficient Processing Requires Determinants in C, the Signal Peptide, and PrM. J Virol 72: 2141-2149.
Tan BH, Fu J, Sugrue RJ, Yap EH, Chan YC and Tan YH. 1996. Recombinant Dengue Type 1 Virus NS5 Protein Expressed in Escherichia coli Exhibits RNA-Dependent RNA Polymerase Activity. Virology 216: 317-325.
Teoh PG, Huang ZS, Pong WL, Chen PC and Wu HN. 2014. Maintenance of Dimer Conformation by the Dengue Virus Core Protein α4-α4′ Helix Pair Is Critical for Nucleocapsid Formation and Virus Production. J Virol 88: 7998-8015.
Tiwary AK and Cecilia D. 2017. Kinetics of the Association of Dengue Virus Capsid Protein with the Granular Component of Nucleolus. Virology 502: 48-55.
Villordo SM and Gamarnik AV. 2009. Genome Cyclization as Strategy for Flavivirus RNA Replication. Virus Res 139: 230-239.
Wang SH, Syu WJ, Huang KJ, Lei HY, Yao CW, King CC and Hu ST. 2002. Intracellular Localization and Determination of a Nuclear Localization Signal of the Core Protein of Dengue Virus. J Gen Virol 83: 3093-3102.
Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CKE, Walther P, Fuller SD, Antony C, Krijnse-Locker J and Bartenschlager R. 2009. Composition and Three-Dimensional Architecture of the Dengue Virus Replication and Assembly Sites. Cell Host & Microbe 5: 365-375.
Westaway EG, Mackenzie JF, Kenney MT, Jones MK and Khromykh AA. 1997. Ultrastructure of Kunjin Virus-Infected Cells: Colocalization of NS1 and NS3 with Double-Stranded RNA, and of NS2B with NS3, in Virus-Induced Membrane Structures. J Virol 71: 6650-6661.
World Health Organization. 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control.
Xu T, Sampath A, Chao A, Wen D, Nanao M, Chene P, Vasudevan SG and Lescar J. 2005. Structure of the Dengue Virus Helicase/Nucleoside Triphosphatase Catalytic Domain at a Resolution of 2.4 Å. J Virol 79: 10278-10288.
Yusof R, Clum S, Wetzel M, Murthy HM and Padmanabhan R. 2000. Purified NS2B/NS3 Serine Protease of Dengue Virus Type 2 Exhibits Cofactor NS2B Dependence for Cleavage of Substrates with Dibasic Amino Acids In Vitro. J Biol Chem 275: 9963-9969.
Zhou Y, Ray D, Zhao Y, Dong H, Ren S, Li Z, Guo Y, Bernard KA, Shi PY and Li H. 2007. Structure and Function of Flavivirus NS5 Methyltransferase. J Virol 81: 3891-3903.
Zou J, Xie X, Wang QY, Dong H, Lee MY, Kang C, Yuan Z and Shi PY. 2015. Characterization of Dengue Virus NS4A and NS4B Protein Interaction. J Virol 89: 3455-3470.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top