跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張培倫
研究生(外文):Chang, Pei-Lun
論文名稱:利用彩色時間性裴氏圖建構12吋晶圓廠之混合式之物料運輸系統之模擬模式
論文名稱(外文):Using CTPN to Model a Hybrid Material Handling System in a 300 mm Fab
指導教授:劉志明劉志明引用關係
指導教授(外文):Liu, Chih-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:77
中文關鍵詞:自動物料搬運系統彩色時間性裴氏圖三階段離散事件模擬反應曲面法OHT與人員配置
外文關鍵詞:automated material handling systemcolored timed Petri netthree-phase discrete event simulationresponse surface methodallocation of OHTs and operators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在探討12吋晶圓廠內的物料運輸問題。由於12吋晶圓重量造成人工搬運上的困難,因此自動物料搬運系統(AMHS)在12吋晶圓廠中被大量使用。但在實務的12吋晶圓廠的Intrabay系統中,仍然存在一些特別狀況,需要以人力去搬運以達到較好的生產績效。在現階段Intrabay系統的搬運100%自動化是很難達成的。因此本研究將探討混合式的搬運系統(HTS)模式,同時考慮以人力搭配OHT (Overhead Hoist Transport) 進行搬運。
在研究方法上,我們利用彩色時間性裴氏圖(CTPN)去建構混合式的搬運系統 (HTS) 模式。混合式之搬運系統模式可以適用於半導體不同區域的Intrabay系統,基於此目的該模式必須為一個具一般化的模型。在建構彩色時間性裴氏圖的模式上,我們將模式結構跟模式組態分離,以避免因為問題組態而影響到模式的結構。混合式之搬運系統模式主要包含兩個子系統,一為搬運系統,另一個為生產系統。在建構搬運系統上必須同時考慮人力與OHT的不同的搬運行為,以及搬運時所會面臨的狀況,而生產系統上也必須考慮半導體不同區域內的生產行為。其次將這兩個子系統進行連結,以CTPN為基的混合式之搬運系統轉換成三階段模擬(Three-Phase Discrete Event Simulation)進行模擬分析。模擬不同的情境後,最後利用反應曲面法求得在最佳的績效下,人員與OHT的最適配置比率。
本研究的實驗結果可以用來當作半導體在人力與OHT的搭配的決策參考依據。以CTPN建構的模型具有一般性,因此可以作為規劃不同區域內人力與OHT的最適配置。
This study investigates the transportation problems in the semiconductor fabrication. Due to the weight and size of the 300 mm wafer lot, it is difficult to transport lots by operators, and therefore the automated material handling system (AMHS) is widely employed. Nevertheless, in practice, there are several special situations where operators perform better than AMHS. To date, fully-automated transportation for an intrabay is still difficult to achieve, so that generally the hybrid transportation system (HTS) is adopted. Hence, this study focuses on the optimal design of the HTS that incorporate overhead hoist transports (OHTs) with operators.
The proposed methodology exploits the colored timed Petri nets (CTPN) to model the HTS, which can be applied to diverse areas in the intrabay system of semiconductor fabrication, and the modeling tool for analyzing the HTS has to be generalized. The model structure is separated from the model configuration in modeling the HTS, and thus prevents the need to modify a model structure due to a different problem configuration. There are two sub-systems, the transportation system and the production system in the HTS. In the construction of the transportation system, one needs to consider simultaneously the different behavior of operators and OHTs, and different situations in the transportation.
Also one needs to consider the different production behavior in the different fabrication areas. Then, these two sub-systems are combined and the CTPN-based hybrid transport system is transformed into a three-phase discrete event simulation system for further analysis. After simulating different scenarios, the response surface method (RSM) is used to obtain the optimal allocation of OHTs and operators.
The results of this study can provide the needed information to support the decision for allocation of OHTs and operators. Besides, the CTPN-based HTS simulator is a general model which can be applied to diverse areas of semiconductor fabrication.
1.Breymann, U. (2002), Designing Components with the C++ STL: A New Approach to Programming, Addison-Wesley Longman Limited, Boston.
2.Campbell, E., J. Ammenhesuser, J. Cheatham, and D. Fandel (2000), “Technology Transfer #00033920A-ENG, Dynamic. Dynamic Factory Modeling Person Guided Vehicle (PGV) Report”, International SEMATECH.
3.Chen, C. H. (2003), “Using GA and CTPN for Modeling the Optimization-Based Schedule Generator of a Generic Production Scheduling System”, Master Thesis, Department of Industrial Engineering & Engineer Management, National Tsing Hua University.
4.Chen, J. H., L. C. Fu, M. H. Lin, and A. C. Huang (2001), “Petri-Net and GA-Based Approach to Modeling, Scheduling, and Performance Evaluation for Wafer Fabrication”, IEEE Transactions on Robotics and Automation, Vol. 5, No. 5, pp. 619-636.
5.Chrisos, J. and J. Nestel-Patt (1998), “Integration Risks in 300-mm Wafer Fab Automation”, Solid State Technology, Vol. 41, No. 7, pp. 193, 196, 198, 200, 202.
6.Descrochers, A. A. and R. Y. Al-Jaar (1995), Applications of Petri Net in Manufacturing Systems, IEEE Press, New York.
7.Egbelu, P. J. and J. M. A. Tanchoco (1984), “Characterization of Automated Guided Vehicle Dispatching Rules”, International Journal of Production Research, Vol. 22, No. 3, pp. 359–374.
8.Hung, H. P. and C. T. Wang (2002), “Modeling and Performance Evaluation for Automated Material Handling Systems in a 300mm Foundry Fab”, Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 3181-3186.
9.International Technology Roadmap for Semiconductors Factory Integration, 2003 Edition.
10.Jeng, M. D. and F. DiCesare (1993), “A Review of Synthesis Techniques for Petri Net with Applications to Automated Manufacturing Systems”, IEEE Transactions on Semiconductor Manufacturing, Vol. 23, No. 1, pp.301-312.
11.Jeng, M. D., X. Xie, and S. W. Chou (1998), “Modeling, Qualitative Analysis, and Performance Evaluation of the Etching Area in an IC Wafer Fabrication System Using Petri Nets”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp. 358-373.
12.Jensen, K. (1995), Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use, Vol. 2, Springer, New York.
13.Kuo, C. H. (2002), “Modelling and Performance Evaluation of an Overhead Hoist Transport System in a 300 mm Fabrication Plant”, The International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 153-161.
14.Kuo, C. H., C. H. Wang, and K. W. Huang (2003), “Behavior Modeling and Control of 300 mm Fab Intrabays Using Distributed Agent Oriented Petri Net”, IEEE Transactions on System, Man, and Cybernetics Part A: System and Human, Vol. 33, No. 5, pp. 641-648.
15.Lee, C. C. and J. T. Lin (1995), “Deadlock Prediction and Avoidance Based on Petri Nets for Zone-Control Automated Guided Vehicle Systems”, International Journal of Production Research, Vol. 33, No. 12, pp. 3249-3265.
16.Liao, D. and H. S. Fu (2004), “Dynamic OHT Allocation and Dispatching in Large-Scale, 300-mm AMHS Management”, IEEE Robotics and Automation Magazine, Vol. 11, No. 3, pp. 22-33.
17.Lin, J. T. and C. C. Lee (1996), “Three-Phase Discrete Event Simulation of Timed Petri Nets”, Journal of the Chinese Institute of Industrial Engineers, Vol. 13, No. 1, pp. 11-22.
18.Lin, J. T., F. K. Wang, and C. K. Wu (2003), “Simulation Analysis of the Connecting Transport AMHS in a Wafer Fab”, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3, pp. 555-564.
19.Lin, M. H. and L. C. Fu (2000), “Modelling, Control and Simulation of an IC Wafer Fabrication System: a Generalized Stochastic Coloured Timed Petri Net Approach”, International Journal of Production Research, Vol. 38, No. 14, pp. 3305-3341.
20.Lin, S. Y. and H. P. Hung (1998), “Modeling and Emulation of a Furnace in IC Fab Based on Colored-Timed Petri Net”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp. 410-420.
21.Liu, F. H. and P. C. Hung (2002), “Control Strategy for Dispatching Multi-Load Automated Guided Vehicles in a Deadlock-Free Environment”, Journal of Mathematical Modelling and Algorithms, Vol. 1, No. 2, pp. 117-134.
22.Mackulak, G. T. and P. Savory (2001), “A Simulation-Based Experiment for Comparing AMHS Performance in a Semiconductor Fabrication Facility”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Vol. 14, No. 3, pp. 273-280.
23.Murata, T. (1989), “Petri Net: Properties, Analysis and Applications”, IEEE Transactions on Semiconductor Manufacturing, Vol. 77, No. 4, pp.541-580.
24.Murray, S., G. T. Mackulak, J. W. Fowler, and T. Colvin (2000), “A Simulation-Based Cost Modeling Methodology for Evaluation of Interbay Material Handling in a Semiconductor Wafer Fab”, Proceedings of the 2000 Winter Simulation Conference, pp. 1510-1517.
25.Odrey, N. G., J. D. Green, and A. Appello (2001), “A Generalized Petri Net Modeling Approach for the Control of Re-entrant Flow Semiconductor Wafer Fabrication”, Robotics and Computer Integrated Manufacturing, Vol. 17, pp. 5-11.
26.Peters, B. A. and T. Yang (1997), “Integrated Facility Layout and Material Handling System Design in Semiconductor Fabrication”, IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 3, pp. 360-369.
27.Pierce, N. G. and R. Stafford (1994), “Modeling and Simulation of Material Handling for Semiconductor Wafer Fabrication”, Proceedings of the 1994 Winter Simulation Conference, pp. 900-906.
28.Stanley, T., K. Rust, R. Wright, and J. Maia (2001), “Technology Transfer #01064128A, Automated Material Handling Benefit Quantification Report”, International SEMATECH.
29.Viswanadham, N. and Y. Narahari (1992), Performance Modeling of Automated Manufacturing Systems, Prentice Hall, New Jersey.
30.Wu, N. (2001), “Avoiding Deadlock and Reducing Starvation and Blocking in Automated Manufacturing Systems”, IEEE Transactions on Robotics and Automation, Vol. 17, No. 5, pp. 658-669.
31.Xiong, H. H. and M. C. Zhou (1998), “Scheduling of Semiconductor Test Facility via Petri Nets and Hybrid Heuristic Search”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp.384-393.
32.Yeh, M. S. and W. C. Yeh (1998), “Deadlock Prediction and Avoidance for Zone-Control AGVS”, International Journal of Production Research, Vol. 36, No. 10, pp. 2879-2889.
33.Zhou, M. C. and M. D. Jeng (1998), “Modeling, Analysis, Simulation, Scheduling and Control of Semiconductor Manufacturing Systems: A Petri Net Approach”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp. 333-357.
34.Zuberek W. M. (1991), “Timed Petri nets: Definitions, Properties, and Applications”, Microelectronics and Reliability: Special Issues on Petri Nets and Related Graph Models, Vol. 31, No. 4, pp. 627-644.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林甘敏(民88)。〈探討專科學生對多媒體資料庫檢索方式的偏好〉,《嶺東學報》,第十期,頁205-220。
2. 林奇賢(民87)。〈網路學習環境的設計與應用〉,《資訊與教育》,第67期,頁34-50。
3. 林麗娟(民83)。〈互動式教學環境與科學性知識的學習〉,《教學科技與媒體》,第16期,頁3-13。
4. 柯志祥(民90)。〈網路虛擬實境應用在遠距教育時的互動性〉,《隔空教育論叢》,第十三輯,頁63-77。
5. 計惠卿(民83)。〈互動式課程軟體之人機介面的新研究:使用者的思維模式〉,《教學科技與媒體》,第十四期,頁40-48。
6. 韋金龍(民90)。〈多媒體網路電腦在英語教學的應用〉,《英語教學》,第二十五卷第三期,55-63。
7. 陳淑芳(民87)。〈Bringing Computers into the Language Classroom〉,《東吳外語學報》,第十三期,頁174-165。
8. 陳淑惠、曹素香(民87)。〈國小英語教室常用教室用語、師生互動策略與溝通情境建構〉,《國民教育》,第39卷,頁22-29。
9. 曹素香(民76)。〈兒童英語教學之我見〉,《國民教育》,第二十八卷第四期,頁20-22。
10. 黃燦遂(民79)。〈談國內的兒童英語教學〉,《英語教學》,第十四期,頁4-7。
11. 游美惠(民89)。〈內容分析、文本分析與論述分析在社會研究的運用〉,《調查研究》,第八期,頁5-42。
12. 蕭錫錡、沈健華(民87)。〈自我導向學習〉,《人力發展》,第57期,頁46-51。