參考文獻
[1]宇羿國際健康有限公司 資料庫提供 http://www.soar.com.tw/Links05.htm
[2]百度百科-联合国糖尿病日http://baike.baidu.com/view/1983504.htm?fromtitle=%E4%B8%96%E7%95%8C%E7%B3%96%E5%B0%BF%E7%97%85%E6%97%A5&fromid=427567&type=search
[3]行政院衛生署統計室http://www.mohw.gov.tw/cht/dos/
[4]糖尿病衛教 http://homepage.vghtpe.gov.tw/~meta/niddm.htm
[5]台北榮總糖尿病衛教http://wd.vghtpe.gov.tw/meta/site.jsp?id=1696
[6]許清曉,常用臨床檢驗手冊,藝軒圖書,(2001)。
[7]徐俊旭,可棄式多層奈米碳管修飾性葡萄糖生物感測器之研究,雲林科技大學化學工程與材料工程研究所碩士論文,2007[8]Chen, Yan-Shi, and Jin-Hua Huang. "Arrayed CNT–Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol." Biosensors and Bioelectronics 26.1 (2010): 207-212.
[9]生物感測器 吳宗正http://www.bime.ntu.edu.tw/~dsfon/LifeScience/lifesci.htm
[10]莊亞璇,電化學阻抗式肝功能生物感測器,國立清華大學材料科學工程學系碩士論文,2010[11]化學生物感測器講義 東華大學化學系 蘇宏基編著http://www.chem.ndhu.edu.tw/ezfiles/27/1027/img/828/su.pdf
[12]謝振傑,光纖生物感測器,物理雙月刊(廿八卷四期)(2006)。
[13]陳詩?,電流式葡萄糖生物感測器之製備及測試,國立臺灣科技大學化學工程系碩士論文,2009
[14]許峰碩,奈米碳黑在免疫層析檢測上的應用,國立中興大學化學工程研究所碩士論文,2002[15]U. E. Spichiger-Keller, Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley-VCH. (1998).
[16]Tess, Mark E., and James A. Cox. "Chemical and biochemical sensors based on advances in materials chemistry." Journal of pharmaceutical and biomedical analysis 19.1 (1999): 55-68..
[17]呂博文,Fe3O4 奈米微粒修飾性網印碳電極於葡萄糖生物感測器之研究,國立雲林科技大學化學工程研究所碩士論文,2006[18]Lee, Shyh-Hwang, et al. "Electrochemical study on screen-printed carbon electrodes with modification by iron nanoparticles in Fe (CN) 6 4−/3− redox system." Analytical and bioanalytical chemistry 383.3 (2005): 532-538.
[19]Toghill, Kathryn E., and Richard G. Compton. "Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation." Int J Electrochem Sci 5.9 (2010): 1246-1301.
[20]Turner, Anthony PF, Beining Chen, and Sergey A. Piletsky. "In vitro diagnostics in diabetes: meeting the challenge." Clinical chemistry 45.9 (1999): 1596-1601.
[21]張紘銓,張意杰,非侵入式血醣研究,東南科技大學專題報告,2012
[22]呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學系碩士論文,2003[23]蔡姓賢,偏振干涉術使用在量測旋光效應及葡萄糖濃度,國立中央大學機械工程研究所碩士論文,2007[24]吳政鴻,超臨界流體合成鈀/石墨烯/離子液體之複合材料 的電化學生化感測特性,國立中央大學材料科學與工程研究所碩士論文,2011[25]李嘉勳,中孔洞鎳電極在非酵素葡萄糖感測之研究,國立高雄應用科技大學化學工程與材料工程系碩士論文,2009[26]Wang, Guangfeng, et al. "Non-enzymatic electrochemical sensing of glucose."Microchimica Acta 180.3-4 (2013): 161-186.
[27]Wang, Juan, and Wei-De Zhang. "Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose." Electrochimica Acta 56.22 (2011): 7510-7516.
[28]維基百科-葡萄糖https://zh.wikipedia.org/wiki/%E8%91%A1%E8%90%84%E7%B3%96
[29]維基百科-Glucono delta-lactone https://en.wikipedia.org/wiki/Glucono_delta-lactone
[30]維基百科-葡萄糖酸https://zh.wikipedia.org/wiki/葡萄糖酸
[31]翁瑄博,奈微米鑽石於不同結構矽基板之場發射特性硏究,國立臺灣科技大學光電工程研究所,2013
[32]曾永華、陳柏穎、鄭宇明和游銘永,"人造合成鑽石及應用",科學發展,2014。
[33]劉榮忠,摻硼鑽石電極結合安培偵測法在毛細管電泳系統中.分析含硫胺基酸之研究,國立中山大學化學研究所碩士論文,2004[34]柯志諭,氫氧化鎳修飾奈米鑽石薄膜開發高靈敏度非酵素型生物感測電極之應用,國立清華大學材料科學工程學系碩士論文,2010[35]Yao, Kaiyuan, et al. "Carbon SP 2-SP 3 technology: Graphene-on-diamond thin film UV detector." Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 2014.
[36]Kobashi, Koji. Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. Elsevier, 2010.
[37]Liu, Huimin, and David S. Dandy. Diamond chemical vapor deposition: nucleation and early growth stages. Elsevier, 1996.
[38]Jiang, X., et al. "Diamond film orientation by ion bombardment during deposition." Applied physics letters 68.14 (1996): 1927-1929.
[39]Iijima, Sumio, Yumi Aikawa, and Kazuhiro Baba. "Early formation of chemical vapor deposition diamond films." Applied physics letters 57.25 (1990): 2646-2648.
[40]Dennig, Paul A., and David A. Stevenson. "Influence of substrate topography on the nucleation of diamond thin films." Applied physics letters 59.13 (1991): 1562-1564.
[41]董耀中,熱退火後處理對於奈米鑽石薄膜場發射特性之研究,雲林科技大學電子工程系實務專題報告,2007
[42]Jong-Hee Park, T.S. sudarshan, Chemical vapor deposition, The materials information society (1989)
[43]R.F. Davis Noyes, Diamond Films and Coatings, Moyes publications, p.69 (1993)
[44]Matsumoto, Seiichiro, et al. "Vapor deposition of diamond particles from methane." Japanese Journal of applied physics 21.4A (1982): L183.
[45]Tiwari, Jitendra N., et al. "Direct synthesis of vertically interconnected 3-D graphitic nanosheets on hemispherical carbon particles by microwave plasma CVD." Plasmonics 6.1 (2011): 67-73.
[46]Arora, Suneet, and V. D. Vankar. "Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness."Thin Solid Films 515.4 (2006): 1963-1969.
[47]Matsumoto, Seiichiro, Mototsugu Hino, and Toyohiko Kobayashi. "Synthesis of diamond films in a RF induction thermal plasma." Applied physics letters 51.10 (1987): 737-739.
[48]Zhang, Tao, et al. "The effect of deposition parameters on the morphology of micron diamond powders synthesized by HFCVD method." Journal of Crystal Growth 372 (2013): 49-56.
[49]Meyer, Duane E., Rodney O. Dillon, and John A. Woollam. "Radio‐frequency plasma chemical vapor deposition growth of diamond." Journal of Vacuum Science & Technology A 7.3 (1989): 2325-2327.
[50]S.J. Kim, B. K. Jul, Y.H. Lee, B.S. Park, IEEE, p.526 (1996)
[51]鄭人豪,白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究,南台科技大學化學工程系碩士論文,2004[52]Skoog, Douglas A., and Donald M. West. Principles of instrumental analysis. Vol. 158. Philadelphia: Saunders College, 1980.
[53]D. R. Crow ; 黃進益譯,“電化學的原理及應用,高立出版,(1998)
[54]Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis, Saunders College, Fifth Edition, New York, 1998.
[55]Wang, Joseph. Analytical electrochemistry. John Wiley & Sons, 2006.
[56]圖片出處http://140.136.176.3/joom/data/menu/files/exp/CV.ppt
[57]Seidel, H., et al. "Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers." Journal of the electrochemical society 137.11 (1990): 3612-3626.
[58]Seidel, H., et al. "Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants." Journal of the Electrochemical Society 137.11 (1990): 3626-3632.
[59]Mohammad Jellur Rahman, “Lecture Notes on Structure ofMatter,” Department of Physics BUET, Dhaka-1000.
[60]Bean, Kenneth E. "Anisotropic etching of silicon." IEEE Transactions on Electron Devices 25.10 (1978): 1185-1193.
[61]國立台灣科技大學貴儀中心日本JEOL-6500F 場發射掃描式電子顯微鏡
[62]立台灣科技大學材料所X-ray繞射儀 (Bruker, D8 Discover SSS Multi Function High Power X-Ray Diffractometer)
[63]Richard L. McCreery. Raman Spectroscopy for Chemical Analysis ,John Wiley and Sons. NY, 1-5(2000)
[64]國立台灣科技大學化學工程系的顯微拉曼光譜儀,機型UniNano-UniG2D
[65]國立台灣科技大學材料所原子力顯微鏡 (AFM)
[66]Sankaran, K. J., et al. "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma." Journal of Physics D: Applied Physics 45.36 (2012): 365303.
[67]Pradhan, Debabrata, and I. Nan Lin. "Grain-Size-Dependent Diamond− Nondiamond Composite Films: Characterization and Field-Emission Properties." ACS applied materials & interfaces 1.7 (2009): 1444-1450.
[68]Yu-Fen Tzeng, Chi-Young Lee, Hsin-Tien Chiu, Nyan-Hwa Tai,I-Nan Liin, ”Electron field emission properties on ultra-nano-crystalline diamond coated silicon nanowires”,Diamond & Related Materials, (2008):1817-1820
[69]K.G. Saw, J. du Plessis, Materials Letters, pp.1344-1348 (2004)
[70]Panda, Kalpataru, et al. "Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films." ACS applied materials & interfaces 6.11 (2014): 8531-8541.
[71]Hall, David S., et al. "Nickel hydroxides and related materials: a review of their structures, synthesis and properties." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 471. No. 2174. The Royal Society, 2015.
[72]Lu, Li-Min, et al. "A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy."Biosensors and Bioelectronics 25.1 (2009): 218-223.
[73]Kung, Chung-Wei, Yu-Heng Cheng, and Kuo-Chuan Ho. "Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor." Sensors and Actuators B: Chemical 204 (2014): 159-166.
[74]Choi, Taejin, et al. "Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing." Biosensors and Bioelectronics 63 (2015): 325-330.
[75]Qiao, Ningqiang, and Jianbin Zheng. "Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene." Microchimica Acta 177.1-2 (2012): 103-109.
[76]Tian, Huifeng, et al. "Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode." Electrochimica Acta 96 (2013): 285-290.
[77]Toghill, Kathryn E., et al. "The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode." Sensors and Actuators B: Chemical 147.2 (2010): 642-652.
[78]Kim, Sang Hoon, Ahmad Umar, and Sang-Woon Hwang. "Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application."Ceramics International (2015).
[79]Zhang, Ping, et al. "A highly sensitive nonenzymatic glucose sensor based on CuO nanowires." Microchimica Acta 176.3-4 (2012): 411-417.
[80]Li, Changli, et al. "Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing." Nanotechnology26.1 (2015): 015503.
[81]Dung, Nguyen Quoc, et al. "A high-performance nonenzymatic glucose sensor made of CuO–SWCNT nanocomposites." Biosensors and Bioelectronics 42 (2013): 280-286.
[82]Luo, Liqiang, Limei Zhu, and Zhenxin Wang. "Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode." Bioelectrochemistry 88 (2012): 156-163.
[83]Liu, Guangyue, et al. "Improvement of sensitive CuO NFs–ITO nonenzymatic glucose sensor based on in situ electrospun fiber." Talanta 101 (2012): 24-31.