[1]S.H. Nam, S.J. Cho, C.K. Jung, J.H. Boo, J. Šicha, D. Heřman, J. Musil, J. Vlček, “Comparison of hydrophilic properties of TiO2 thin films prepared by sol–gel method and reactive magnetron sputtering system”, Thin Solid Films 519, pp. 6944 – 6950 (2011)
[2]M.H. Chan, W.Y. Ho, D.Y. Wang, F.H. Lu, “Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma deposition”, Surface & Coatings Technology 202, pp. 962 – 966 (2007)
[3]E. Aubry, V. Demange, A. Billard, “Effect of the internal stress relaxation during the post-annealing on the photo-induced properties of TiO2 coatings reactively sputtered”, Surface & Coatings Technology 202, pp. 6120 – 6126 (2008)
[4]S.D. Sharma, D. Singh, K.K. Saini, C. Kant, V. Sharma, S.C. Jain, C.P. Sharma, “Sol–gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst”, Applied Catalysis A: General 314, pp. 40 – 46 (2006)
[5]M. Houmard, G. Berthome, J.C. Joud, M. Langlet, “Enhanced cleanability of super-hydrophilic TiO2–SiO2 composite surfaces prepared via a sol–gel route”, Surface Science 605, pp. 456 – 462 (2011)
[6]Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, “Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering”, Vacuum 81, pp. 627 – 631 (2007)
[7]M. Kazemi, M.R. Mohammadizadeh, “Superhydrophilicity and photocatalytic activity of sol–gel deposited nanosized titania thin films”, Thin Solid Films 519, pp. 6432 – 6437 (2011)
[8]M. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia, M. Anpo, “Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface”, The Journal of Physical Chemistry B 109, pp. 15422 – 15428 (2005)
[9]A.I. Kontos, A.G. Kontos, D.S. Tsoukleris, G.D. Vlachos, P. Falaras, “Superhydrophilicity and photocatalytic property of nanocrystalline titania sol–gel films”, Thin Solid Films 515, pp. 7370 – 7375 (2007)
[10]A. Borra’s, C. Lo’pez, V. Rico, F. Gracia, A. R. Gonza’lez-Elipe, E. Richter, G. Battiston, R. Gerbasi, N. McSporran, G. Sauthier, E. Gyo1rgy, A. Figueras, “Effect of visible and uv illumination on the water contact angle of TiO2 thin films with incorporated nitrogen”, The Journal of Physical Chemistry C 111, pp. 1801 – 1808 (2007)
[11]R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, “Studies of surface wettability conversion on TiO2 single-crystal Surfaces”, The Journal of Physical Chemistry B 103, pp. 2188 – 2194 (1999)
[12]R. Jribi, E. Barthel, H. Bluhm, M. Grunze, P. Koelsch, D. Verreault, E. Sondergard, “Ultraviolet irradiation suppresses adhesion on TiO2”, The Journal of Physical Chemistry C 113, pp. 8273 – 8277 (2009)
[13]M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation”, Surface Science 511, pp. 401 – 407 (2002)
[14]H. Choi, E. Stathatos, D.D. Dionysiou, “Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol–gel method modified with nonionic surfactants”, Thin Solid Films 510, pp. 107 – 114 (2006)
[15]J.C. Yu, J. Yu, W. Ho, J. Zhao, “Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films”, Journal of Photochemistry and Photobiology A: Chemistry 148 , pp. 331 –339 (2002)
[16]H.Y. Lee, Y.H. Park, K.H. Ko, “Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD-TiO2 Films”, Langmuir 16, pp. 7289 – 7293 (2000)
[17]E. Quagliarini, F. Bondioli, G.B. Goffredo, A. Licciulli, P. Munaf, “Self-cleaning materials on architectural heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces”, Journal of Cultural Heritage 14 , pp. 1 – 7 (2012)
[18]B. Liu, L. Wen, X. Zhao, “The surface change of TiO2 film induced by UV illumination and the effects on UV–vis transmission spectra”, Applied Surface Science 255, pp. 2752 – 2758 (2008)
[19]Z.W. Zhao, B.K. Tay, “Study of nanocrystal TiO2 thin films by thermal annealing” , J Electroceram 16, pp. 489 – 493 (2006)
[20]R. Mechiakh, N.B. Sedrine, J.B. Naceur, R. Chtourou, “Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol–gel dip-coating”, Surface & Coatings Technology 206, pp. 243 –249 (2011)
[21]F. Meng, Z. Sun, “A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering”, Applied Surface Science 255, pp. 6715 –6720 (2009)
[22]M. Piispanen, L. Hupa, “Comparison of self-cleaning properties of three titania coatings on float glass”, Applied Surface Science 258, pp. 1126 – 1131 (2011)
[23]X. Wang, X. Hou, W. Luan, D. Li, K. Yao, “The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol–gel method”, Applied Surface Science 258, pp. 8241 – 8246 (2012)
[24]A.A. Ismail, “Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties”, Microporous and Mesoporous Materials 149, pp. 69 – 75 (2012)
[25]C. Srisitthiratkul, V. Pongsorrarith, N. Intasanta, “The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties”, Applied Surface Science 257, pp. 8850 – 8856 (2011)
[26]B. Tryba, M. Piszcz, A.W. Morawski, “Photocatalytic and self-cleaning properties of Ag-doped TiO2”, The Open Materials Science Journal 4, pp. 5 – 8 (2010)
[27]N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, “Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle”, The Journal of Physical Chemistry B 107, pp. 1028 – 1035 (2003)
[28]T. Hirakawa, Y. Nosaka, “Properties of O2.- and OH. formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions”, Langmuir 18, pp.3247 – 3254 (2002)
[29]H.W.P. Carvalhoa, A.P.L. Batista, P. Hammer, T.C. Ramalho, “Photocatalytic degradation of methylene blue by TiO2–Cu thin films: theoretical and experimental study”, Journal of Hazardous Materials 184, pp. 273 – 280 (2010)
[30]T. Hirakawa, K. Yawata, Y. Nosaka, “Photocatalytic reactivity for O2.- and OH. radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition”, Applied Catalysis A: General 325, pp. 105 – 111 (2007)
[31]陳永芳,以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦,國立交通大學應用化學系博士論文,(2003)[32]M. Lazzeri, A. Vittadini, A. Selloni, “Structure and energetics of stoichiometric TiO2 anatase surfaces”, Physical Review B 63, (2001)
[33]陳富亮,最新奈米光觸媒應用技術,普林斯頓國際有限公司出版,(2003)
[34]Y.H. Tseng, S.L. Liu, C.S. Kuo, C.H. Huang, Y.L. Huang, Y.Y. Li, T. Sano, N. Negishi, S. Matsuzawa, “Preparation of nano-sized TiO2 sol and its visible-light-responsive photocatalysis in aquatic state”, Micro & Nano Letters, Volume 1, Issue 2, pp. 116 – 119 (2006)
[35]藤嶋昭,橋本和仁,渡部俊也,吳紀聖,圖解光觸媒,世茂出有限公司,pp. 74 – 124 (2006)
[36]Anonymous in phase diagrams for ceramists figure, The American Ceramic Society Inc.76, pp. 4150 (1975)
[37]鍍膜技術簡介,億達薄膜股份有限公司,(http://www.etafilm.com.tw/Thin_Films_Introduction_ch.html)
[38]陳家富,真空鍍膜基礎(二)
[39]W.Y. Ho, H.H. Hsueh, D.Y. Wang, W.Y. Ho, “Structures and properties of AlTiON coatings synthesized by cathodic arc deposition process”, 屏東教育大學學報-理工類第三十期, pp. 1 -16 (2009)
[40]蕭宇呈,碳改質二氧化鈦薄膜及其可見光催化活性之研究,碩士論文,國立台灣科技大學化學工程系,2011[41]A.L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical Reviews 95, pp. 735 - 758 (1995)
[42]林有銘,無所不在的環境清潔工-奈米光觸媒,科學發展月刊,pp. 24 - 31 (2006)[43]黃嘉宏,二氧化矽/二氧化鈦中性水溶膠之製備與光催化活性研究,博士論文,國立交通大學環境工程研究所,2012[44]T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baranb, H. Ratajczak, “IR-analysis of H-bonded H2O on the pure TiO2 surface”, Journal of Molecular Structure 700 , pp. 175 – 181 (2004)
[45]J.C.S. Wu, Y.T. Cheng, “In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation”, Journal of Catalysis 237, pp. 393 – 404 (2006)
[46]L.Ren, Y.P. Zeng, D. Jiang, “Preparation, characterization and photocatalytic activities of Ag-deposited porous TiO2 sheets”, Catalysis Communications 10, pp. 645 – 649(2009)