跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王鈞正
研究生(外文):Jyun-Jheng Wang
論文名稱:利用大腸桿菌宿主系統表現綠豆澱粉磷解酶基因之重組蛋白質
論文名稱(外文):Expression of mungbean (Vigna radiata L.) starch phosphorylase recombinant protein in E. coli system
指導教授:柯源悌
指導教授(外文):Yuan-Tih Ko
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:92
中文關鍵詞:澱粉磷解酶大腸桿菌重組蛋白質
外文關鍵詞:starch phosphorylaseE. colirecombinant protein
相關次數:
  • 被引用被引用:1
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
澱粉磷解酶(starch phosphorylase, SP;EC 2.4.1.1)為高等植物澱粉代謝酵素之一。先前已獲得綠豆 (Vigna radiata L.) SP之原生型全長cDNA (Vrsp-wt, 2961bp, GenBank GQ465004);本研究目的是將Vrsp-wt選殖到以大腸桿菌為宿主的表現載體並表現出重組蛋白。實驗方法為將兩端含 EcoRI 與 SalI 限制酶切位的Vrsp-wt,接入 pMAL-c2X 載體,再轉型至 JM 109 選殖宿主;結果發現只接入 1500 bp 長度的原生型重組質體,推測是受 Vrsp-wt 本身序列影響,使其重組質體在宿主複製時產生斷裂或重組現象;因此設計修飾型的Vrsp (Vrsp-modify),兩端為含有 SalI 與 BamHI 的切位接入;所獲正株系之重組質體大小約為10 kb,利用Vrsp-modify 序列的引子以PCR、限制酶切割與內部序列確認,已成功建立含有重組載體 pMAL-c2X-Vrsp-modify 的株系。在重組蛋白質的誘導方面,以BL21(DE3) 為表現宿主,當誘導溫度37℃、6小時、IPTG 濃度為0.6 mM,觀察到誘導出之蛋白質分子大小為 54 kDa 之可溶性未知蛋白質,但比預估為157 kDa之 rVrSP 重組蛋白質小;此 54 kDa 蛋白質待進一步的身份鑑定,西方墨點等實驗來確定是否為一部分的rVrSP 重組蛋白質,以及再試誘導條件,或需更換表現宿主來得到預期分子量蛋白質。
總 目 錄 I
圖 目 錄 V
表 目 錄 VIII
中文摘要 1
Abstract 2
第一章 前言 3
第二章 文獻回顧 5
第一節 澱粉生合成作用 5
1.1 澱粉的結構與組成 5
1.2 參與澱粉生合成之酵素 9
1.3 澱粉生合成之路徑 11
1.4 酵素性修飾澱粉的發展 13
第二節 澱粉磷解酶研究歷史 15
2.1 澱粉磷解酶背景 15
2.2 催化特性 18
2.3 綠豆中澱粉磷解酶 19
2.4 研究目的 22
第三章 材料與方法 23
第一節 材料 23
1. 1 樣品 23
1. 2 載體 23
1.3 勝任細胞 23
第二節 藥品 24
第三節 儀器設備 26
第四節 實驗流程設計 28
第五節 DNA 片段的擴增與純化 29
5.1 聚合酶鏈鎖反應 ( polymerase chain reaction, PCR) 29
5.2 DNA 洋菜膠體電泳分析法 30
5. 3 DNA片段純化方法 31
第六節 重組質體之建構與轉形 32
6.1 電轉勝任細胞製備 32
6.2 重組質體之構築 33
6.3 重組載體轉形 (transformation) 至勝任細胞 37
第七節 重組質體分析 38
7. 1 小量質體DNA抽取 38
7. 2 表現質體以PCR 增幅目標片段確認 39
7. 3 表現質體以限制酶切割確認 40
7. 4 DNA 序列定序 41
第八節 重組蛋白質的誘導與分析 41
8.1 重組蛋白質誘導表現 41
8.2 重組蛋白質之抽取 42
8.2.1 SDS 煮沸破菌法 42
8.2.2 冷凍解凍破菌法 43
8.3 以電泳確定目標蛋白表現 44
第四章 結果與討論 47
第一節 pMAL-c2X-Vrsp-wt重組質體的構築與分析 47
1.1 Vrsp-wt 內部序列限制酶切位分析 47
1.2 表現載體與宿主的挑選 48
1.3 Vrsp-wt 量化與片段純化 48
1.4 pMAL-c2X-Vrsp-wt重組質體的構築 50
1.5 pMAL-c2X-Vrsp-wt重組質體的分析 50
第二節 pMAL-c2X-Vrsp-modify重組載體的構築與分析 52
2.1 pMAL-c2X-Vrsp-modify重組載體的構築 52
2.2 pMAL-c2X-Vrsp-modify重組載體的分析 53
第三節 重組蛋白質的表現與分析 54
3.1不同IPTG濃度誘導重組蛋白質的表現 54
3.2 不同誘導時間重組蛋白質的表現 55
3.3 誘導 rVrSP重組蛋白質的探討 56
第五章 結論 57
結果圖與表 58
參考文獻 80
附錄...... 89

















圖 目 錄

圖一、直鏈澱粉與支鏈澱粉的鍵結形式圖 6
圖二、支鏈澱粉的分支結構圖 7
圖三、澱粉顆粒的結構與組成 8
圖四、澱粉生合成由光合作用產物開始的路徑圖 12
圖五、Vrsp 編碼出的內部胺基酸序列與其他物種之SP經平行並列後之比較 21
圖六、建構重組質體pMAL-c2X-Vrsp之實驗流程 28
圖七、pMAL-c2X載體結構圖 (New England BioLabs ) 40
圖八、帶有Vrsp-modify的pMK-RQ載體結構圖 (GENEART) 53
圖九、Vrsp-wt DNA限制酶切位圖譜 58
圖十、以 Vrsp-wt為模板以SP-EcoRI-F3 及SP-SalI-R3引子對使用58~62℃引子黏合溫度進行PCR擴增產物之瓊酯膠體電泳圖 60
圖十一、Vrsp-wt全長片段經EcoRI及SalI限制酶切割作用產物切膠純化後之瓊脂醣膠體電泳圖 61
圖十二、載體 pMAL-c2X 經限制酶EcoRI及SalI處理後之瓊脂醣膠體電泳圖 62
圖十三、挑選六個單一菌落抽取質體之瓊脂膠體電泳圖 63
圖十四、隨意挑選七個pMAL-c2X-Vrsp-wt positive colony之劃線次培養 64
圖十五、轉形至E. coli JM-109選殖宿主之重組質體pMAL-c2X- Vrsp-wt之瓊脂醣膠體電泳圖 65
圖十六、以SP-EcoRI-F3和SP-SalI-R3引子對進行PCR確認pMAL-c2X-Vrsp 之插入序列之瓊酯膠體電泳圖 66
圖十七、pMK-RQ載體經BamHI及SalI限制酶切割後 67
之瓊脂醣膠體電泳圖 67
圖十八、莫耳數比1:3進行接合反應並利用電穿孔轉形至BL21 (DE3)宿主細胞所獲得之positive colonies. 68
圖十九、莫耳數比1:1進行接合反應並利用電穿孔轉形至BL21 (DE3)宿主細胞所獲得之positive colonies. 69
圖二十、挑選5個positive colonies抽取質體進行瓊脂醣膠體電泳圖 70
圖二十一、轉型進入BL21(DE3)宿主的重組質體DNA經由PCR反應量化插入片段之瓊脂膠體電泳圖 71
圖二十二、轉型進入BL21(DE3)宿主的重組質體DNA經由限制酶 EcoRI 與SalI進行雙限制酶剪切作用之瓊脂膠體電泳圖 72

圖二十三、pMAL-c2X-Vrsp-modify DNA 999 bp 片段定序結果與 Vrsp-modify DNA進行並列比對 74
圖二十四、pMAL-c2X-Vrsp-modify DNA 904 bp 片段定序結果與 Vrsp-modify DNA進行並列比對 76
圖二十五、不同IPTG濃度誘導 rVrSP重組蛋白質蛋白質在大腸桿菌 BL21 (DE3)細胞表現之粗萃可溶性蛋白質SDS-PAGE 分析 77
圖二十六、不同誘導時間rVrSP重組蛋白質在大腸桿菌BL21 (DE3)宿主表現之粗萃可溶性蛋白質SDS-PAGE分析 79





















表 目 錄

表一、根據分子量、對醣類親合性及來源的不同,可將 SP 分為兩種型態 18                                                             
表二、本研究所使用的引子序列表. 59
表三、不同誘導時間之 BL21 (DE3) 宿主細胞之 pellet 濕重與           可溶性蛋白質濃度 78


吳昭慧和連大進 (1996) 綠豆。少量多樣化雜糧作物栽培手冊。
臺灣省政府農林廳。
翁廷賜和賴森雄 (1992) 粉綠綠豆新品種台南五號之育成。行政
院農業委員會台南區農業改良場研究彙報第 28 號,台南。
許仁宏 (2003) 水稻白化苗澱粉磷解酶之生化學與分子生物學研
究。 國立台灣大學農業化學研究所博士學位論文, 台北。
張靜宜 (2002) 綠豆澱粉分支酵素的鑑定。中國醫藥大學營養學研
究所碩士論文,台中。
張家瑋 (2007) 綠豆分支澱粉酶I在大腸桿菌系統之表現與特性分
析。國立台灣海洋大學食品科學系碩士學位論文,基隆。
張瑋齊 (2009) 在大腸菌系統建構重組綠豆澱粉酶 cDNA。 國立
台灣海洋大學食品科學系碩士學位論文,基隆。
彭書愷 (2007) 綠豆澱粉磷解酶 cDNA 之基因選殖與特性分析。
國立台灣海洋大學食品科學系碩士學位論文,基隆。
Andoh, A., Tsujikawa, T. and Fujiyama, Y. (2003) Role of dietary fiber and short-chain fatty acids in the colon. Curr. Pharm. Des. 9: 347-358.

Ao, Z. H., Simsek, S., Zhang, G. Y., Venkatachalam, M., Reuhs, B. L. and Hamaker, B. R. (2007) Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J. Agric. Food Chem. 55: 4540-4547.

Ball, S., Guan, H. P., James, M., Myers, A., Keeling, P., Mouille, G.,
Buleon, A., Colonna, P. and Preiss, J. (1996) From glycogen to
amylopectin: a model for the biogenesis of the plant starch granule.
Cell 86: 349-352.

Baranowski, T., Illingworth, B., Brown, D. H. and Cori, C. F. (1957) The isolation of pyridoxal-5-phophate from crystalline phosphorylase. Biochim. Biophys. Acta. 25: 16-21.

Buchner, P., Borisjuk, L. and Wobus, U. (1996) Glucan phosphorylases in Vicia faba L.: Cloning, structural analysis and expression patterns ofcytosolic and plastidic forms in relation to starch. Planta. 199: 64-73.

Burke, J., Hwang, P. K., Gorin, F., Lebo, R.V. and Fletterick, R. J. (1987) Intron/exon structure of the human gene for the muscle isozyme of glycogen phosphorylase. Proteins. 2: 177-187.

Burr, B. and Nelson, O. E. 1975. Maize α-glucan phosphorylase. Eur. J.
Biochem. 56: 539-546.

Chang, T. C., Lee, P. D. and Su, J. C. (1987) Sweet potato starch
phosphorylase purification and characterization. Agric. Biol. Chem. 51: 187-195.

Cao, H., James, M. G. and Myers, A. M. (2000) Purification and
characterization of soluble starch synthases from maize endosperm.
Arch. Biochem. Biophys. 373: 135-146.

Chen, H. M., Chang, S. C., Wu, C. C., Cuo, T. S., Wu, J. S. and Juang, R. H. (2002) Regulation of the catalytic behaviour of L-form starch
phosphorylase from sweet potato roots by proteolysis. Physiol. Plant. 114: 506-515.

Chiang, C. L., Lu, Y. L., Juang, R. H., Lee, P. D. and Su, J. C. (1991) Native and degraded forms of sweet potato starch phosphorylase. Agric. Biol. Chem. 55: 641-646.

Dieffenbach C. W. and Dveksler G. S. (1995) PCR primer a laboratory manual. United States of America. Cold Spring Harbor Labotory Press. pp. 542.

Emes, M. J., Bowsher, C. G., Hedley, C., Burrell, M. M., Scrase-Field, E. S. F. and Tetlow, I. J. (2003) Starch synthesis and carbon partitioning in developing endosperm. J. Exp. Bot. 54: 569-575.

Fox, J. D. Routzahn, K. M., Bucher,M. H. and Waugh,D. S. (2003)
Maltodextrin-binding proteins from diverse bacteria and archaea are potent solubility enhancers. FEBS Lett. 537: 53-57.

Fredrick, J. F. (1973) Further studies of primer-independent phosphorylase isozymes in the algae. Phytochemistry. 12: 1933-1936.

Gallant D. J., Bouch B., Baldwin P. M. (1997) Microscopy of starch : evidence of a new level of granual organization. Carbohydr. Polym. 32: 177-191.

Garg, S. and Kumar, A. (2007) Immobilization of starch phosphorylase from seeds of Indian millet (Pennisetum typhoides) variety KB560.
African J. Biotech. 6: 2715-2720.

Hoebler, C., Karinthi, A., Chiron, H., Champ, M. and Barry, J. L. (1999) Bioavailability of starch in bread rich in amylose: metabolic responses in healthy subjects and starch structure. Eur. J. Clin. Nutr. 53: 360-366.

Hanes, C. S. (1940) The reversible formation of starch from glucose-1-phosphate catalyzed by potato phosphorylase. Proc. R. Soc. (London) Ser. B. 129: 174-208.

Hodge, J. E. and Osman, E. M. (1976) Carbohydrates. In “food chemistry”. physicochemical characterization of mung bean starch. Food Hydrocol. 11: 401-408.

Hsu, J. H., Yang, C. C., Su, J. C. and Lee, P. D. (2004) Purification and
characterization of a cytosolic starch phosphorylase from etiolated rice seedlings. Bot. Bull. Acad. Sin. 45: 187-196.

Hwang, P. K. and Fletterick, R. J. (1986) Convergent and divergent evolution of regulatory sites in eukaryotic phosphorylase. Nature. 324: 80-84.

Jobling, S. (2004) Improving starch for food and industrial applications.
Curr. Opin. Plant. Biol. 7: 210-218.

Ko, Y. T., Chang, S. K., Chen, H. C. and Li, Y. C. (2004) GBSS activities on mungbean (Vigna radiata L.) starch granule and analysis of its total protein profiles. Taiwan. J. Agric. Chem. Food Sci. 42: 132-139.

Ko, Y. T., Chang, J. Y., Lee, Y. T. and Wu, Y. H. (2005) The identification of starch phosphorylase in the developing mungbean (Vigna radiata L.). J. Agric. Food Chem. 53: 5708-5715.

Ko, Y. T., Chang, J. Y., Lai, C. C., Chen, M. R. and Chang, J. W. (2008) Identification of a starch branching enzyme and coexisting starch biosynthetic enzymes from partially purified mung bean (Vigna radiata L.) fractions. J. Food Biochem. 32: 122-141.

Lee, C. K., Le, Q. T., Kim, Y. H., Shim, J. H., Lee, S. J., Park, J. H., Lee, K. P., Song, S. H., Auh, J. H., Lee, S. J. and Park, K. H. (2008) Enzymatic synthesis and properties of highly branched rice starch amylose and amylopectin cluster. J. Agric. Food Chem. 56: 126-131.

Li, C. Y., Chu, Y. L. and Chang, Y. H. (1987) Isolation and characterization of mungbean starch. in mungbean, proceedings of the second international symposium. Bangkok, Thailand, Asian Vegetable Research and Development Center, pp. 528-535.

Lin, C. T., Lin, M. T., Chou, H. Y., Lee, P. D. and Su, J. C. (1995) The gene structure of starch phosphorylase from sweet potato. Plant Physiol. 107: 277-278.

Lin, C. T., Yeh, K. W., Lee, P. D. and Su, J. C. (1991) Primary structure of sweet potato starch phosphorylase deduced from its cDNA sequence. Plant Physiol. 95: 1250-1253.

Liu, F. Makhmoudova, A. Lee, E. A. Wait, R. Emes, M. J. and Tetlow, I. J. (2009) The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzyme in amyloplasts. J. Exp. Bot. 60: 4423-4440.

Matsuda, S. I., Kaneko, Y. and Kadokawa, J. I. (2007) Chemoenzymatic synthesis of amylose-grafted chitosan. Macromo. Rapid Commu. 28: 863-867.

Matheson, N. K. and Richardson, R. H. (1978) Kinetic properties of two
starch phosphorylases from pea seeds. Phytochemistry 17: 195-200.

Martin, C. and Smith, A. M. (1995) Starch biosynthesis. Plant Cell. 7:
971-985.

Mori, H., Tanizawa, K. and Fukui, T. (1993) A chimeric α-glucan
phosphorylase of plant type L and H isozymes. J. Biol. Chem. 268:
5574-5581.

Mu, H. H., Yu, Y., Wasserman, B. P. and Carman, G. M. (2001) Purification and characterization of the maize amyloplast stromal 112-kDa starch phosphorylase. Arch. Biochem. Biophys. 388: 155-164.

Myers, A. M., Morell, M. K., James, M. G. and Ball, S. G. (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 122: 989-997.

Nakano, K. and Fukui, T. (1986) The complete amino acid sequence of
potato α-glucan phosphorylase. J. Biol. Chem. 261: 8230-8236.

Nakano, K., Mori, H. and Fukui, T. (1989) Molecular cloning of cDNA
encoding potato amyloplast alpha-glucan phosphorylase and the
structure of its transit peptide. J. Biochem. 106: 691-695.

Newgard, C. B., Hwang, P. K. and Fletterick, R. J. (1989) The family of
glycogen phosphorylases : structure and function. Crit. Rev. Biochem. Mol. Biol. 24: 69-99.

Onyango, C. and Mutungi, C. (2008) Synthesis and in vitro digestion of resistant starch type III from enzymatically hydrolysed cassava starch. Int. J. Food Sci. Tech. 43: 1860-1865.

Ohdan, T., Francisco, P. B., Sawada, T., Hirose, T., Terao, T. and Satoh, H. (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 56:
3229-3244.

Ohdan, K., Fujii, K., Yanase, M., Takaha, T. and Kuriki, T. (2006) Enzymatic synthesis of amylose. Biocatal. Biotrans. 24: 2477-81.

Ozbun, J. L., Hawker, J. S., Greenberg, E., Lammel, C., Preiss, J. and Lee, E. Y. C. (1973) Starch synthetase, phosphorylase, ADPglucose pyrophosphorylase, and UDPglucose pyrophosphorylase in developing maize kernels. Plant Physiol. 51: 1-5.

Park, K. H., Kim, T. J., Cheong, T. K., Kim, J. W., Oh, B. H. and Svensson, B. (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim. Biophys. Acta. 1478: 165-185.

Preiss, J. and Sivak, M. N. (1998) Biochemistry, molecular biology and
regulation of starch synthesis. Genet. Eng. 20: 177-223.


Schächtele, C. and Steup, M. (2004) α-1,4-Glucan phosphorylase forms from leaves of spinach (Spinacia oleracea L.) I. In situ localization by indirect immunofluorescence. Planta. 167: 444-451.

Schachtele, C. and Steup, M. (1986) α-1,4-Glucan phosphorylase forms
developing maize kernels. Plant Physiol. 51: 1-5.

Schupp, N. and Ziegler. P. (2004) The relation of starch phosphorylase to starch metabolism in wheat. Plant Cell Physiol. 45: 1471-1484.

Sharma, A., Yadav, B. and Ritika, S. (2008) Resistant starch: physiological roles and food applications. Food Rev. Int. 24: 193-234.

Sievert, D. and Pomeranz, Y. (1989) Enzyme-resistant starch . I
.characterization and evaluation by enzymatic thermo analytical and microscopic methods. Cereal Chem. 66: 342-347.

Slattery, C. J., Kavakli, I. H. and Okita, T. W. (2000) Engineering starch for increased quantity and quality. Trends. Plant, Sci. 5: 291-298.

Smith, A. M. (2001) The biosynthesis of starch granules. Biomacromol. 2: 335-341.

Studier, F. W., Rosenberg, A. H., Dunn, J. J., and Dubendorff, J. W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60-89.

Takata, H., Takaha, T., Okada, S., Takagi, M. and Imanaka, T. (1996) Cyclization reaction catalyzed by branching enzyme. J. Bacteriol. 178: 1600-1606.

Takaha, T. and Smith, S. M. (1999) The functions of 4-alpha-glucanotransferases and their use for the production of cyclic glucans. Biotechnol. Genet. Eng. Rev. 16: 257-280.

Tetlow, I. J., Morell, M. K. and Emes, M. J. (2004) Recent developments in understanding the regulation of starch metabolism in higher plant. J. Exp. Bot. 55: 2131-2145.

Tsay, J. S., Kuo, W. L. and Kuo, C. G. (1983) Enzyme involved in starchsynthesis in the developing mung bean seed. Phytochem. 22:
1573-1576.

Visser, R. G. F. and Jacobson, E. (1993) Towards modifying plants for
altered starch content and composition. TIBTECH 11: 63-68.

Vivo, A. and Felipe, M. R. (1986) Cytochemical location and biochemical analysis of the starch phosphorylase enzyme in pea seeds (Pisum sativum L. cv. Rivalin). Cell Mol. Biol. 32: 471-476.

Vethanayagam, J. G. and Flower, A. M. (2005) Decreased gene expression from T7 promoters may be due to impaired production of active T7 RNA polymerase. Microb. Cell Fact. 4: 3.

Yanase, M., Takaha, T. and Kuriki, T. (2006) α-Glucan phosphorylase and its use in carbohydrate engineering. J. Sci. Food Agric. 86: 1631-1635.

Yue, P. and Waring, S. (1998) Resistant starch in food applications. Cereal Foods World. 43: 690-695.

Yu, Y., Mu, H. H., Wasserman, B. P. and Carman, G. M. (2001) Identification of the maize amyloplast stromal 112-kDa protein as a plastidic starch phosphorylase. Plant Physiol. 125: 351-359.

Zeeman, S. C., Kossmann, J. and Smith, A. M. (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu. Rev. Plant Biol. 61: 209-234.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊