跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.130) 您好!臺灣時間:2025/12/10 10:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳思穎
研究生(外文):Szu-ying Chen
論文名稱:探討細胞凋亡蛋白酶抑制劑誘發之細胞死亡的訊息傳遞路徑
論文名稱(外文):Signaling pathways of caspase inhibitor induced cell death
指導教授:林琬琬林琬琬引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:89
中文關鍵詞:細胞凋亡蛋白抑制劑
外文關鍵詞:caspase inhibitor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Benzyloxycarbonyl-Val-Ala-Asp (ZVAD)是一種非選擇性細胞凋亡蛋白酶(caspase) 抑制劑,廣泛用於抑制細胞凋亡 (apoptosis)。有趣的是,近來研究發現ZVAD本身在mouse L929 fibrosarcoma 會導致細胞壞死 (necrosis),並伴隨著自噬性細胞體(或稱細胞自噬小體) (autophagosome) 的形成,也被稱為自噬性細胞死亡 (autophagic cell death)。他們發現ZVAD誘發的自噬性細胞死亡仰賴caspase 8抑制,RIP和 JNK的活性,以及氧化自由基的堆積。至今這些分子或媒介物之間的連結及詳細的訊息傳遞的機制並不清楚,因此本實驗的目的在於闡明ZVAD誘發自噬性細胞死亡的分子機轉,找出當細胞凋亡蛋白酶抑制下,JNK,ROS,PARP,Src及鈣離子在此訊息傳遞路徑所扮演的角色,並進一步釐清其和細胞自噬形成的上下游關係。
首先,我們確認ZVAD處理L929細胞可以促進LC3 cleavage,beclin 1基因表現,細胞自噬小體形成,及胞內氧化自由基堆積。利用對於粒腺體具專一性的螢光染劑 (MitoSox) 及抑制劑 (Rotenone,FCCP,BHA),我們發現ZVAD產生的氧化自由基主要是來自於粒腺體。抗氧化劑,beclin 1 silence,第三型PI3K 抑制劑 (3-MA, 其已知為細胞自噬小體形成的抑制劑) 皆能有效的阻斷氧化自由基的產生及細胞死亡,表示氧化自由基的堆積在細胞自噬的下游並導致細胞壞死。另外,我們的結果顯示ZVAD能夠刺激PARP的活化,且PARP抑制劑 (DPQ) 能夠顯著地降低ZVAD造成的細胞死亡,但並不影響氧化性自由基的產生。以上結果顯示氧化自由基增加會造成PARP的活化,並進一步導致細胞的死亡。除此之外,我們發現ZVAD能夠刺激細胞內鈣離子的增加,而給予BAPTA/AM 或是除去鈣離子的培養液,都能夠抑制氧化自由基的產生及細胞死亡。
當我們用特定的蛋白激酶抑制劑去分析其參與ZVAD的訊息傳遞路徑時,發現JNK,ERK及Src和ZVAD引發的細胞死亡及氧化自由基的增加有關。此外,結果亦顯示ZVAD能夠快速地活化JNK,ERK,而此作用受Src抑制劑所拮抗。這些結果促使我們提出一個假設: ZVAD 導致的自噬性細胞壞死是經由抑制caspase 8 /Src活化 /JNK和ERK的活化 /產生細胞自噬/ 經由粒腺體產生氧化自由基 /PARP活化,最後造成細胞壞死性的死亡。
這些發現提供了我們更多關於caspase 8 在細胞凋亡之外作用的資訊。除了之前已知參與在典型caspase cascade造成細胞凋亡外,在caspase 8抑制下反而會造成另一種新穎的訊息傳遞路徑導致細胞自噬並進一步造成細胞壞死。
Benzyloxycarbonyl-Val-Ala-Asp (ZVAD), a pancaspase inhibitor has been widely used to abolish apoptotic cell death. Interestingly, previous reports showed that ZVAD alone induces necrosis accompanying with autophagosome formation, which termed as autophagic cell death, in L929 fibrosarcoma cells. They found that ZVAD-induced autophagic cell necrosis relies on caspase 8 inhibition, RIP1, JNK activity, and ROS accumulation. Until now the connection of these molecules and signaling mechanisms in details, however, are unclear. Therefore the aim of this study is to elucidate the molecular mechanisms of ZVAD-induced autophagic cell death, and find out the sequential roles of JNK, ROS, poly (ADP-ribose) polymerase (PARP) , calcium and Src in the signaling pathways triggered upon caspase inhibition and their action levels either upstream or downstream of autophagosome formation.
First, we confirm ZVAD indeed can stimulate LC3 cleavage, beclin 1 gene expression, autophagosome formation, and cytosolic ROS accumulation in L929 cells. Further study with mitochondria specific fluorescence dye (MitoSox) and inhibitors (rotenone, FCCP and BHA), we suggest that the ROS production by ZVAD is generated from mitochondria. Antioxidants, beclin 1 silence, class III PI3K inhibitor (3-MA) all effectively block ROS production and cell death, implying ROS accumulation downstream of autophagy contributes to cell necrosis. Moreover, our results reveal that ZVAD can stimulate PARP activation and PARP inhibitor DPQ significantly reduces ZVAD-induced cell death, but does not affect ROS production, suggesting ROS increase leading to PARP activation, and in turn causing cell death. Besides, we find that ZVAD stimulates intracellular calcium elevation, and ZVAD-induced ROS production and cell death are abolished by either BAPTA/AM or Ca-free medium. When using specific kinase inhibitors to analyze their involvement in ZVAD-elicited events, we find that JNK, ERK and Src are involved in ZVAD-induced cell death and ROS increase. Biochemical data evidence ZVAD rapidly induces JNK and ERK phosphorylation, and both signaling activations are sensitive to Src inhibitor PP2 and its siRNA treatment. All these results prompt us to propose that ZVAD-induced autophagic cell necrosis is mediated sequentially through caspase 8 inhibition/Src activation/JNK and ERK activation/autophagy formation/ROS generation from mitochondria/PARP activation, and eventually leads to cell death.
Theses finding provide more information to understand the apoptosis- independent role played by caspase 8 in cell death. In addition to initiate classical caspase cascade leading to cell apoptosis, caspase 8 inhibition in contrast trigger a novel signaling pathway leading to cell autophagy, and in turn necrosis cell death.
Abbreviations 5
Abstract 7
Abstract in Chinese 9
Introduction 11
Specific aims 24
Materials and Methods 26
Results 34
Discussion 42
Figures 53
Appendix 69
References 74
Abe, J., Takahashi, M., Ishida, M., Lee, J.D., and Berk, B.C. (1997). c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J Biol Chem 272, 20389-20394.
Benard, O., Naor, Z., and Seger, R. (2001). Role of dynamin, Src, and Ras in the protein kinase C-mediated activation of ERK by gonadotropin-releasing hormone. J Biol Chem 276, 4554-4563.
Bonicalzi, M.E., Haince, J.F., Droit, A., and Poirier, G.G. (2005). Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when? Cell Mol Life Sci 62, 739-750.
Brekke, O.L., Shalaby, M.R., Sundan, A., Espevik, T., and Bjerve, K.S. (1992). Butylated hydroxyanisole specifically inhibits tumor necrosis factor-induced cytotoxicity and growth enhancement. Cytokine 4, 269-280.
Bubici, C., Papa, S., Dean, K., and Franzoso, G. (2006). Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25, 6731-6748.
Bursch, W. (2001). The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8, 569-581.
Byfield, M.P., Murray, J.T., and Backer, J.M. (2005). hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280, 33076-33082.
Chan, F.K., Shisler, J., Bixby, J.G., Felices, M., Zheng, L., Appel, M., Orenstein, J., Moss, B., and Lenardo, M.J. (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 278, 51613-51621.
Chautan, M., Chazal, G., Cecconi, F., Gruss, P., and Golstein, P. (1999). Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9, 967-970.
Chen, Y., McMillan-Ward, E., Kong, J., Israels, S.J., and Gibson, S.B. (2008). Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15, 171-182.
Chen, Y.H., Pouyssegur, J., Courtneidge, S.A., and Van Obberghen-Schilling, E. (1994). Activation of Src family kinase activity by the G protein-coupled thrombin receptor in growth-responsive fibroblasts. J Biol Chem 269, 27372-27377.
Clark, E.A., and Brugge, J.S. (1993). Redistribution of activated pp60c-src to integrin-dependent cytoskeletal complexes in thrombin-stimulated platelets. Mol Cell Biol 13, 1863-1871.
Cooper, J.A., Gould, K.L., Cartwright, C.A., and Hunter, T. (1986). Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231, 1431-1434.
Corcelle, E., Djerbi, N., Mari, M., Nebout, M., Fiorini, C., Fenichel, P., Hofman, P., Poujeol, P., and Mograbi, B. (2007). Control of the autophagy maturation step by the MAPK ERK and p38: lessons from environmental carcinogens. Autophagy 3, 57-59.
Corcelle, E., Nebout, M., Bekri, S., Gauthier, N., Hofman, P., Poujeol, P., Fenichel, P., and Mograbi, B. (2006). Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res 66, 6861-6870.
Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T., and Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305, 1292-1295.
D''Amours, D., Desnoyers, S., D''Silva, I., and Poirier, G.G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342 ( Pt 2), 249-268.
Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219.
Davidson, D., Cloutier, J.F., Gregorieff, A., and Veillette, A. (1997). Inhibitory tyrosine protein kinase p50csk is associated with protein-tyrosine phosphatase PTP-PEST in hemopoietic and non-hemopoietic cells. J Biol Chem 272, 23455-23462.
de Murcia, G., Schreiber, V., Molinete, M., Saulier, B., Poch, O., Masson, M., Niedergang, C., and Menissier de Murcia, J. (1994). Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138, 15-24.
Denecker, G., Vercammen, D., Declercq, W., and Vandenabeele, P. (2001). Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol Life Sci 58, 356-370.
Dennis, P.B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S.C., and Thomas, G. (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102-1105.
Dhar, A., and Shukla, S.D. (1991). Involvement of pp60c-src in platelet-activating factor-stimulated platelets. Evidence for translocation from cytosol to membrane. J Biol Chem 266, 18797-18801.
Edinger, A.L., and Thompson, C.B. (2004). Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16, 663-669.
Fang, F.C. (2004). Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2, 820-832.
Festjens, N., Vanden Berghe, T., and Vandenabeele, P. (2006). Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757, 1371-1387.
Fiers, W., Beyaert, R., Declercq, W., and Vandenabeele, P. (1999). More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719-7730.
Filipovic, D.M., Meng, X., and Reeves, W.B. (1999). Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells. Am J Physiol 277, 428-436.
Finlay, D., and Vuori, K. (2007). Novel noncatalytic role for caspase-8 in promoting SRC-mediated adhesion and Erk signaling in neuroblastoma cells. Cancer Res 67, 11704-11711.
Fujii, J., Iuchi, Y., Matsuki, S., and Ishii, T. (2003). Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J Androl 5, 231-242.
Gerschenson, L.E., and Rotello, R.J. (1992). Apoptosis: a different type of cell death. FASEB J 6, 2450-2455.
Golde, A. (1970). Radio-induced mutants of the Schmidt-Ruppin strain of rous sarcoma virus. Virology 40, 1022-1029.
Gordon, P.B., Holen, I., Fosse, M., Rotnes, J.S., and Seglen, P.O. (1993). Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 268, 26107-26112.
Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I., and Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753-766.
Ha, H.C., and Snyder, S.H. (1999). Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96, 13978-13982.
Haince, J.F., Rouleau, M., Hendzel, M.J., Masson, J.Y., and Poirier, G.G. (2005). Targeting poly(ADP-ribosyl)ation: a promising approach in cancer therapy. Trends Mol Med 11, 456-463.
Hamaguchi, I., Yamaguchi, N., Suda, J., Iwama, A., Hirao, A., Hashiyama, M., Aizawa, S., and Suda, T. (1996). Analysis of CSK homologous kinase (CHK/HYL) in hematopoiesis by utilizing gene knockout mice. Biochem Biophys Res Commun 224, 172-179.
Hayakawa, F., and Naoe, T. (2006). SFK-STAT pathway: an alternative and important way to malignancies. Ann N Y Acad Sci 1086, 213-222.
Hippert, M.M., O''Toole, P.S., and Thorburn, A. (2006). Autophagy in cancer: good, bad, or both? Cancer Res 66, 9349-9351.
Holen, I., Gordon, P.B., and Seglen, P.O. (1993). Inhibition of hepatocytic autophagy by okadaic acid and other protein phosphatase inhibitors. Eur J Biochem 215, 113-122.
Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J.L., Schneider, P., Seed, B., and Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1, 489-495.
Hoyer-Hansen, M., and Jaattela, M. (2007). Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14, 1576-1582.
Huang, J., Wu, L., Tashiro, S., Onodera, S., and Ikejima, T. (2005). The augmentation of TNFalpha-induced cell death in murine L929 fibrosarcoma by the pan-caspase inhibitor Z-VAD-fmk through pre-mitochondrial and MAPK-dependent pathways. Acta Med Okayama 59, 253-260.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728.
Kamata, H., Honda, S., Maeda, S., Chang, L., Hirata, H., and Karin, M. (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649-661.
Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152, 519-530.
Kim, Y.S., Morgan, M.J., Choksi, S., and Liu, Z.G. (2007). TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 26, 675-687.
Klionsky, D.J., and Emr, S.D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290, 1717-1721.
Koegl, M., Zlatkine, P., Ley, S.C., Courtneidge, S.A., and Magee, A.I. (1994). Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J 303, 749-753.
Kozma, L.M., and Weber, M.J. (1990). Constitutive phosphorylation of the receptor for insulinlike growth factor I in cells transformed by the src oncogene. Mol Cell Biol 10, 3626-3634.
Kuroyanagi, H., Yan, J., Seki, N., Yamanouchi, Y., Suzuki, Y., Takano, T., Muramatsu, M., and Shirasawa, T. (1998). Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics 51, 76-85.
Kuruvilla, A., Pielop, C., and Shearer, W.T. (1994). Platelet-activating factor induces the tyrosine phosphorylation and activation of phospholipase C-gamma 1, Fyn and Lyn kinases, and phosphatidylinositol 3-kinase in a human B cell line. J Immunol 153, 5433-5442.
Kypta, R.M., Goldberg, Y., Ulug, E.T., and Courtneidge, S.A. (1990). Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62, 481-492.
Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4, 181-189.
Lautier, D., Lagueux, J., Thibodeau, J., Menard, L., and Poirier, G.G. (1993). Molecular and biochemical features of poly (ADP-ribose) metabolism. Mol Cell Biochem 122, 171-193.
Lemasters, J.J., Nieminen, A.L., Qian, T., Trost, L.C., Elmore, S.P., Nishimura, Y., Crowe, R.A., Cascio, W.E., Bradham, C.A., Brenner, D.A., and Herman, B. (1998). The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366, 177-196.
Levine, B., and Klionsky, D.J. (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6, 463-477.
Levine, B., and Yuan, J. (2005). Autophagy in cell death: an innocent convict? J Clin Invest 115, 2679-2688.
Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279, 10822-10828.
Lindahl, T., Satoh, M.S., Poirier, G.G., and Klungland, A. (1995). Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci 20, 405-411.
Liu, C.Y., Takemasa, A., Liles, W.C., Goodman, R.B., Jonas, M., Rosen, H., Chi, E., Winn, R.K., Harlan, J.M., and Chuang, P.I. (2003). Broad-spectrum caspase inhibition paradoxically augments cell death in TNF-alpha -stimulated neutrophils. Blood 101, 295-304.
Luttrell, D.K., Luttrell, L.M., and Parsons, S.J. (1988). Augmented mitogenic responsiveness to epidermal growth factor in murine fibroblasts that overexpress pp60c-src. Mol Cell Biol 8, 497-501.
Luttrell, L.M., Hawes, B.E., van Biesen, T., Luttrell, D.K., Lansing, T.J., and Lefkowitz, R.J. (1996). Role of c-Src tyrosine kinase in G protein-coupled receptor- and Gbg subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 271, 19443-19450.
Malanga, M., and Althaus, F.R. (2005). The role of poly(ADP-ribose) in the DNA damage signaling network. Biochem Cell Biol 83, 354-364.
Martin, G.S. (1970). Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227, 1021-1023.
Martin, G.S. (2001). The hunting of the Src. Nat Rev Mol Cell Biol 2, 467-475.
May, M.J., and Madge, L.A. (2007). Caspase inhibition sensitizes inhibitor of NF-kappaB kinase beta-deficient fibroblasts to caspase-independent cell death via the generation of reactive oxygen species. J Biol Chem 282, 16105-16116.
McGarrigle, D., and Huang, X.Y. (2007). GPCRs signaling directly through Src-family kinases. Sci STKE 2007, 35.
Mizushima, N., Ohsumi, Y., and Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Struct Funct 27, 421-429.
Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152, 657-668.
Nada, S., Okada, M., MacAuley, A., Cooper, J.A., and Nakagawa, H. (1991). Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature 351, 69-72.
Nagata, E., Sawa, A., Ross, C.A., and Snyder, S.H. (2004). Autophagosome-like vacuole formation in Huntington''s disease lymphoblasts. Neuroreport 15, 1325-1328.
Nakano, H., Nakajima, A., Sakon-Komazawa, S., Piao, J.H., Xue, X., and Okumura, K. (2006). Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 13, 730-737.
Naor, Z., Benard, O., and Seger, R. (2000). Activation of MAPK cascades by G-protein-coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol Metab 11, 91-99.
Nixon, R.A., Cataldo, A.M., and Mathews, P.M. (2000). The endosomal-lysosomal system of neurons in Alzheimer''s disease pathogenesis: a review. Neurochem Res 25, 1161-1172.
Odorizzi, G., Babst, M., and Emr, S.D. (2000). Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25, 229-235.
Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J.A., Urano, F., and Imaizumi, K. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26, 9220-9231.
Ogier-Denis, E., Pattingre, S., El Benna, J., and Codogno, P. (2000). Erk1/2-dependent phosphorylation of Galpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem 275, 39090-39095.
Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47, 143-183.
Ott, M., Gogvadze, V., Orrenius, S., and Zhivotovsky, B. (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12, 913-922.
Papa, S., Zazzeroni, F., Pham, C.G., Bubici, C., and Franzoso, G. (2004). Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci 117, 5197-5208.
Pattingre, S., Bauvy, C., and Codogno, P. (2003). Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278, 16667-16674.
Peterson, J.E., Kulik, G., Jelinek, T., Reuter, C.W., Shannon, J.A., and Weber, M.J. (1996). Src phosphorylates the insulin-like growth factor type I receptor on the autophosphorylation sites. Requirement for transformation by src. J Biol Chem 271, 31562-31571.
Qin, Z.H., Wang, Y., Kegel, K.B., Kazantsev, A., Apostol, B.L., Thompson, L.M., Yoder, J., Aronin, N., and DiFiglia, M. (2003). Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 12, 3231-3244.
Ralston, R., and Bishop, J.M. (1985). The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor. Proc Natl Acad Sci U S A 82, 7845-7849.
Ram, P.T., and Iyengar, R. (2001). G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation. Oncogene 20, 1601-1606.
Resh, M.D. (1999). Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451, 1-16.
Saelens, X., Festjens, N., Parthoens, E., Vanoverberghe, I., Kalai, M., van Kuppeveld, F., and Vandenabeele, P. (2005). Protein synthesis persists during necrotic cell death. J Cell Biol 168, 545-551.
Sakaki, K., Wu, J., and Kaufman, R.J. (2008). Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 283, 15370-15380.
Sakon, S., Xue, X., Takekawa, M., Sasazuki, T., Okazaki, T., Kojima, Y., Piao, J.H., Yagita, H., Okumura, K., Doi, T., and Nakano, H. (2003). NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22, 3898-3909.
Sato, K., Sato, A., Aoto, M., and Fukami, Y. (1995a). c-Src phosphorylates epidermal growth factor receptor on tyrosine 845. Biochem Biophys Res Commun 215, 1078-1087.
Sato, K., Sato, A., Aoto, M., and Fukami, Y. (1995b). Site-specific association of c-Src with epidermal growth factor receptor in A431 cells. Biochem Biophys Res Commun 210, 844-851.
Scherz-Shouval, R., and Elazar, Z. (2007). ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17, 422-427.
Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26, 1749-1760.
Schliess, F., Reissmann, R., Reinehr, R., vom Dahl, S., and Haussinger, D. (2004). Involvement of integrins and Src in insulin signaling toward autophagic proteolysis in rat liver. J Biol Chem 279, 21294-21301.
Schulze-Osthoff, K., Bakker, A.C., Vanhaesebroeck, B., Beyaert, R., Jacob, W.A., and Fiers, W. (1992). Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267, 5317-5323.
Schulze-Osthoff, K., Beyaert, R., Vandevoorde, V., Haegeman, G., and Fiers, W. (1993). Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12, 3095-3104.
Scott, R.C., Juhasz, G., and Neufeld, T.P. (2007). Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17, 1-11.
Shen, H.M., and Liu, Z.G. (2006). JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40, 928-939.
Shen, H.M., and Pervaiz, S. (2006). TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20, 1589-1598.
Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C.B., and Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6, 1221-1228.
Shinojima, N., Yokoyama, T., Kondo, Y., and Kondo, S. (2007). Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3, 635-637.
Sicheri, F., Moarefi, I., and Kuriyan, J. (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602-609.
Simonson, M.S., Wang, Y., and Herman, W.H. (1996). Nuclear signaling by endothelin-1 requires Src protein-tyrosine kinases. J Biol Chem 271, 77-82.
Smart, J.E., Oppermann, H., Czernilofsky, A.P., Purchio, A.F., Erikson, R.L., and Bishop, J.M. (1981). Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). Proc Natl Acad Sci U S A 78, 6013-6017.
Stehelin, D., Varmus, H.E., Bishop, J.M., and Vogt, P.K. (1976). DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170-173.
Tanida, I., Tanida-Miyake, E., Komatsu, M., Ueno, T., and Kominami, E. (2002). Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 277, 13739-13744.
Tassa, A., Roux, M.P., Attaix, D., and Bechet, D.M. (2003). Class III phosphoinositide 3-kinase--Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376, 577-586.
Temkin, V., and Karin, M. (2007). From death receptor to reactive oxygen species and c-Jun N-terminal protein kinase: the receptor-interacting protein 1 odyssey. Immunol Rev 220, 8-21.
Toyoshima, K., Friis, R.R., and Vogt, P.K. (1970). The reproductive and cell-transforming capacities of avian sarcoma virus B77: inactivation with UV light. Virology 42, 163-170.
Vanden Berghe, T., Declercq, W., and Vandenabeele, P. (2007). NADPH oxidases: new players in TNF-induced necrotic cell death. Mol Cell 26, 769-771.
Vandenabeele, P., Vanden Berghe, T., and Festjens, N. (2006). Caspase inhibitors promote alternative cell death pathways. Sci STKE 2006, pe44.
Ventura, J.J., Cogswell, P., Flavell, R.A., Baldwin, A.S., Jr., and Davis, R.J. (2004). JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18, 2905-2915.
Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W., and Vandenabeele, P. (1998a). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187, 1477-1485.
Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W., and Vandenabeele, P. (1998b). Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188, 919-930.
Vergne, I., Chua, J., Singh, S.B., and Deretic, V. (2004). Cell biology of mycobacterium tuberculosis phagosome. Annu Rev Cell Dev Biol 20, 367-394.
Wang, Z.Q., Stingl, L., Morrison, C., Jantsch, M., Los, M., Schulze-Osthoff, K., and Wagner, E.F. (1997). PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 11, 2347-2358.
Weernink, P.A., and Rijksen, G. (1995). Activation and translocation of c-Src to the cytoskeleton by both platelet-derived growth factor and epidermal growth factor. J Biol Chem 270, 2264-2267.
Williams, J.C., Weijland, A., Gonfloni, S., Thompson, A., Courtneidge, S.A., Superti-Furga, G., and Wierenga, R.K. (1997). The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J Mol Biol 274, 757-775.
Wu, Y.T., Tan, H.L., Huang, Q., Kim, Y.S., Pan, N., Ong, W.Y., Liu, Z.G., Ong, C.N., and Shen, H.M. (2008). Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy 4, 457-466.
Xiao, G. (2007). Autophagy and NF-kappaB: fight for fate. Cytokine Growth Factor Rev 18, 233-243.
Xu, W., Harrison, S.C., and Eck, M.J. (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595-602.
Xu, Y., Huang, S., Liu, Z.G., and Han, J. (2006a). Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation. J Biol Chem 281, 8788-8795.
Xu, Y., Kim, S.O., Li, Y., and Han, J. (2006b). Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem 281, 19179-19187.
Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E.H., and Lenardo, M.J. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500-1502.
Yu, L., Wan, F., Dutta, S., Welsh, S., Liu, Z., Freundt, E., Baehrecke, E.H., and Lenardo, M. (2006). Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A 103, 4952-4957.
Yu, S.W., Wang, H., Poitras, M.F., Coombs, C., Bowers, W.J., Federoff, H.J., Poirier, G.G., Dawson, T.M., and Dawson, V.L. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259-263.
Yu, W.H., Cuervo, A.M., Kumar, A., Peterhoff, C.M., Schmidt, S.D., Lee, J.H., Mohan, P.S., Mercken, M., Farmery, M.R., Tjernberg, L.O., Jiang, Y., Duff, K., Uchiyama, Y., Naslund, J., Mathews, P.M., Cataldo, A.M., and Nixon, R.A. (2005). Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer''s disease. J Cell Biol 171, 87-98.
Zong, W.X., Ditsworth, D., Bauer, D.E., Wang, Z.Q., and Thompson, C.B. (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18, 1272-1282.
Zong, W.X., and Thompson, C.B. (2006). Necrotic death as a cell fate. Genes Dev 20, 1-15.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top