|
[1] C. Guyton and J. E. Hall, Textbook of Medical Physiology, W. B. Saunders Company, Philadelphia, 2000. [2] E. Martin, O. Ingremeau, M. Corazza and M. Billon, “A piezoelectric oxygen transducer based on paramagnetic properties: the TOPP sensor,” Sensors and Actuators B, Vol. 26-27, pp. 293-296, 1995. [3] S. Liu, H. Shen and J. Feng, “Effects of gas flow-rates on a Clark-type oxygen gas sensor,” Analytica Chimica Acta, Vol. 313, pp. 89-92, 1995 [4] H. Ogino and K. Asakura, “Development of a highly sensitive galvanic cell oxygen sensor,” Talanta, Vol. 42, No.2, pp. 305-310, 1995. [5] K. R. Sridhar, J. A. Blanchard, “Electronic conduction in low oxygen partial pressure measurements using an amperometric zirconia oxygen sensor,” Sensors and Actuators B, Vol. 59, pp. 60-67, 1999. [6] G. L. Tan, X. J. Wu, L. R. Wang, Y. Q. Chen, “Investigation for oxygen sensor of LaF3 thin film,” Sensors and Actuators B, Vol. 34, pp. 417-421, 1996. [7] V. I. Ogurtsov and D. B. Papkovsky, “Selection of modulation frequency of excitation for luminescence lifttime-based oxygen sensors,” Sensors and Actuators B, Vol. 51, pp. 377-381, 1998. [8] G. Sberveglieri, W. Hellmich, G. Muller, “Silicon hotplates for metal oxide gas sensor elements,” Microsystem Technologies, Vol. 3, pp. 183-190, 1997. [9] R. E. Cavicchi, J. S. Suehle, K. G. Kreider, M. Gaitan, and P. chaperala, “Optimized temperature pulse sequences for the enhancement of chemically-specific response patterns from micro-hotplate gas sensors,” Transducers’95 Eurosensors IX, pp. 823-826, 1995. [10] Z. Tang, S. K. H. Fung, D. T. W. Wong, P. C.H. Chan , “An integrated gas sensor based on tin oxide thin-film and improved micro-hotplate,” Sensors and Actuators B, Vol. 46, pp. 174-179, 1998 [11] S. Semancik, R. E. Cavicchi, M. C. Wheeler, J. E. Tiffany, G. E. Poirier, “Microhotplate platforms for chemical sensor research,” Sensors and Actuators B, Vol. 77, pp. 579-591, 2001. [12] D. Briand, A. Krauss, U. Weimar, N. Barsan, W. Gopel, “Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors,” Sensors and Actuators B, Vol. 68, pp. 223-233, 2000. [13] I. Gracia, J. Santander, C. Cane, M. C. Horrillo, I. Sayage, J. Gutierrez, “Results on the reliability of silicon micromachined structuresf for semiconductor gas sensors,” Sensors and Actuators B, Vol. 77, pp. 409-415, 2001. [14] W. P. Kang and C. K. Kim, “Performance analysis of a new metal-insulator-semiconductor capacitor incorporated with Pt-SnOx catalytic layers for the detection of O2 and CO gases,” J. Appl. Phys. , Vol.75, No. 8, pp. 4237-4242, 1994. [15] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. Kerns, “Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnOx/Diamond gas sensor,” IEEE Transactions on electron devices, Vol. 46, No. 5, pp. 914-920, 1999. [16] G. Sberveglieri, G. Faglia, S. Groppelli, P. Nelli and C. Perego, “Oxygen gas sensing properties of undoped and Li-doped SnO2 thin films,” Sensors and Actuators B, Vol. 13-14, pp. 117-120, 1993. [17] N. Barsan, A. Tomescu, “The temperature dependence of the response of SnO2-based gas sensing layers to O2, CH4 and CO,” Sensors and Actuators B, Vol. 26-27, pp. 45-48, 1995. [18] J. Atkinson, A. Cranny, C. Simonis , “A low-cost oxygen sensor fabricated as a screen-printed semiconductor device suitable for unheated operation at ambient temperatures,” Sensors and Actuators B, Vol. 47, pp. 171-180, 1998. [19] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. kerns, “ A novel oxygen gas sensor utilizing thin film diamond diode with catalyzed tin oxide electrode,” Sensors and Actuators B, Vol. 35-36, pp. 303-307, 1996. [20] C. Podaru, V. Avramescu, R. Enache, G. Stoica, “TiO2 anodic oxide films for oxygen gas sensors,” J. Electrochem. Soc, pp. 565, 1998. [21] M. Li, Y. Chen, “An investigation of response time of TiO2 thin-film oxygen sensors,” Sensors and Actuators B, Vol.32, pp. 83-85, 1996. [22] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, “Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor,” Sensors and Actuators B, Vol. 45, pp. 209-215, 1997. [23] R. K. Sharma, M. C. Bhatnagar, G. L. Sharma, “Mechanism in Nb doped titania oxygen gas sensor,” Sensors and Actuators B, Vol.46, pp. 194-201, 1998. [24] M. Ogita, K. Higo, Y. Nakanishi, Y. Hatanaka, “Ga2O3 thin film for oxygen sensor at high temperature,” Applied Surface Science, Vol. 175-176,pp721-725,2001. [25] M. Fleischer, H. Meixner, “Fast gas sensors based on metal oxides which are stable at high temperatures,” Sensors and Actuators B, Vol. 43, pp. 1-10, 1997. [26] V. Demarne, S. Balkanova, D. Rosenfeld and F. Levy, “Integrated gas sensor for oxygen detection,” Sensors and Actuators B, Vol. 13-14, pp. 497-498, 1993. [27] I. Kosacki, H. L. Tuller, “Donor-doped Gd2Ti2O7 as a semiconductor-type oxygen sensor,” Sensors and Actuators B, Vol. 24-25, pp. 370-374, 1995. [28] D. Rosenfeld, P. E. Schmid, S. Szeles, F. Levy ,”Electrical transport properties of thin-film metal-oxide-metal Nb2O5 oxygen sensors,” Sensors and Actuators B, Vol. 37, pp. 83-89, 1996. [29] J. Gerblinger, W. Lohwasser, U. Lampe, H. Meixner, “High temperature oxygen sensor based on sputtered cerium oxide,” Sensors and Actuators B, Vol. 26-27, pp. 93-96, 1995. [30] S. V. Manorama, N. Izu, W. Shin, “On the platinum sensitization of nanosized cerium dioxide oxygen sensors,” Sensors and Actuators B, Vol. 89, pp. 299-304, 2003. [31] H. Meixner, U. Lampe, “Metal oxide sensors,” Sensors and Actuators B, Vol. 33, pp. 198-202, 1996. [32] Y. Xu, X. Zhou, O. T. Sorensen, “Oxygen sensors based on semiconducting metal oxides: an overview,” Sensors and Actuators B, Vol. 65, pp. 2-4, 2000. [33] G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors and Actuators B, Vol. 23, pp. 103-109, 1995. [34] G. Sberveglieri, Gas Sensors principles, operation and developments, Kluwer Academic Publishers, pp. 122, 1992. [35] S. M. Sze, Semiconductor Sensors, John Wiley and Sons, pp. 388-396, 1994. [36] J. Ding, T. J. McAvoy, R. E. Cavicchi, S. Semancik, “Surface state trapping models for SnO2-based microhotplate sensors,” Sensors and Actuators B, Vol. 77, pp. 597-613, 2001. [37] J. Wateson, K. Ihokura, “The tin dioxide gas sensor,” Meas. Sci. Technol., Vol. 4, pp. 711-719, 1993. [38] I. Simon, N. Barson, Michael Bauer, Udo Weimar, “Micromachined metal oxide gas sensors: opportunities to improve sensor performance,” Sensors and Actuators B, Vol. 73, pp. 1-26, 1993. [39] N. Barsan, U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics, Vol. 7, pp. 143-167, 2001. [40] S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, “Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors,” Japanese Journal of Applied Physics, Vol. 27, No.10, pp. 1798-1802, 1988. [41] N. Yamazoe, “New approaches for improving semiconductor gas sensors,” Sensors and Actuators B, Vol. 5, pp. 7-19, 1991. [42] 陳美杏,吳建中,李國賓,羅錦興, “應用於新生兒能量消耗量測系統之微型氧氣感測器,” 第十九屆機械工程研討會, 2002. [43] E. Obermeier, P. Kopystynski, “Polysilicon as a material for microsensor applications,” Sensors and Actuators A, Vol. 30, pp. 149-155, 1992. [44] S. M. Sze, Semiconductor devices physics and technology, John Wiley and Sons, 2nd Edition, 2002. [45] G. T. A. Kovacs, Micromachined Transducers Sourcesbook, McGraw-Hill , pp. 79, 1998. [46] M. Madou, Fundamentals of Microfabrication, CRC Press LLC, pp. 261, 1997. [47] S. M. Sze , ULSI Technology, McGraw-Hill , pp. 168, 1996 [48] Chien-Chung Wu, Gwo-Bin Lee, Mei-Hsing Chen, Ching-Hsing Luo,” Micromachined oxygen gas sensors for microscopic energy consumption measurement systems,” Journal of Micromechanics and Microengineering, 2003, submitted. [49] Chien-Chung Wu1, Mei-Hsing Chen , Ching-Hsing Luo, Gwo-Bin Lee, ”Design and Fabrication Issues on Micromachined Oxygen Sensors for Microscopic Energy Consumption Measurement Systems,” Sensors and Materials, 2003, submitted.
|