跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李思翰
研究生(外文):Szu-Han Lee
論文名稱:頸動脈內膜中層厚度變化之非侵入性動態測量
論文名稱(外文):Noninvasive Dynamic Measurements of Carotid Intima-Media Thickness and Stiffness
指導教授:邵耀華
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:68
中文關鍵詞:頸動脈內膜中層厚度超音波B-mode機械特性危險因子
外文關鍵詞:CCAIMTB-mode ultrasoundEcho trackingMechanical propertyRisk factorCardiovascular events
相關次數:
  • 被引用被引用:0
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
頸動脈內膜中層厚度(Carotid Intima-Media Thickness, CIMT)的量測結果,在近十年來已被視為診斷心血管疾病的重要危險因子之一,並且也常被用來當作患者接受治療的療效評估指標。但是過去的量測都只關心CIMT的厚度上的變化,往往因為量測技術上的限制,無法進一步的研究頸動脈管壁本身材質的變化,只從外觀的改變來當作臨床指標,很可能會遺漏一些重要生理資訊的表現。因此本實驗的研究目的在於利用現有的臨床檢測技術上,能否改進量測與計算的定義,在可靠的力學根據下,提供更為精確的臨床診療應用。

根據橡皮管的體外實驗結果,利用超音波以及影像分析所得到的橡皮管尺寸,與實際尺寸間的誤差只有3%,而使用超音波B-mode量測頸動脈的實驗結果顯示,在把頸動脈當作完全彈性體的假設下,所得到的CIMT硬度指標,於十位平均年齡為23.6歲的年輕健康男性中, 結果與過去文獻中常使用的Peterson’s elastic modulus相比較 ,結果顯示 容易受到不同受試者間,不同的生理狀態(血壓、舒張壓時管徑)之影響,而 在考慮受試者的IMT變化情況下,比 能夠反映更多的受試者頸動脈材料性質,因此得到了較為穩定的實驗結果。

由實驗結果顯示,本實驗所提出的頸動脈硬度指標,為一個有效且能反映更多生理資訊的指標,並且利用現有的超音波儀器,只要經過後端的影像處理分析,便能克服以往在量測上的限制,在將來經過更多的實驗驗證後,以期可以降低臨床診斷以及評估治療成效的難度,並提高其準確性。
Aims Measurement of change in carotid intima-media thickness (CIMT) has been proposed as an alternative for the occurrence of cardiovascular events in the assessment of therapeutic interventions. This study attempted to use the current technique of the clinical examination to improve diagnosis not only by the evolving technology but also by the mathematical progressing.

Methods and results We assume the carotid arterial wall is the elastic material so we can use the Hooke''s law to analyze it. The experiment is based on the use of ultrasound B-mode imaging technique and the off-line image analysis. Elastic tube phantom experiments demonstrated the validity of the technique, providing the size of the tube within 3% of the actual values. The system was also tested in the common carotid arteries of 10 healthy males (age 23.6 y). According to the experimental result, it shows that our index is less variant than Peterson’s elastic modulus. The results of and are and respectively.

Conclusion The new index shows the ability to reveal more physiological information and is more adaptable to be a risk factor of the cardiovascular events, but it needs more evidence to verify the observation.
致 謝 I
中文摘要 II
Abstract III
表目錄 VI
圖目錄 VII
第一章 序論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 文獻回顧 5
第二章 研究原理 8
2-1 動脈管組織結構特性 8
2-2 超音波影像原理 17
2-3 頸動脈在臨床檢測的角色 20
第三章 實驗方法 27
3-1 實驗方法 28
3-2 彈性力學模型 30
3-3 實驗設備 37
3-4 實驗步驟 40
3-5 IMT影像分析原理 42
第四章 結果與討論 46
4-1橡皮管實驗結果 46
4-2 頸動脈管壁量測與硬度評估 50
4-3 硬度指標差異討論 56
4-4 實驗結果討論 59
第五章 結論與未來工作 63
參考文獻 65
Armentano, R., J. L. Megnien, et al. (1995). "Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans." Hypertension 26(1): 48-54.
Armentano, R. L., J. Levenson, et al. (1991). "Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs." Am J Physiol 260(6 Pt 2): H1870-7.
Arnett, D. K., L. E. Chambless, et al. (1999). "Variability in ultrasonic measurements of arterial stiffness in the Atherosclerosis Risk in Communities study." Ultrasound Med Biol 25(2): 175-80.
Augst, A., B. Ariff, et al. (2007). Analysis of complex flow and the relationship between blood pressure, wall shear stress and intima-media thickness in the human carotid artery: 00989.2006.
Bader, H. (1967). Dependence of Wall Stress in the Human Thoracic Aorta on Age and Pressure. 20: 354-361.
Barra, J. G., R. L. Armentano, et al. (1993). "Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs." Circ Res 73(6): 1040-50.
Bergel, D. H. (1961). "The static elastic properties of the arterial wall." J Physiol 156(3): 445-57.
Boissel, J., J. Collet, et al. (1992). "Surrogate endpoints: A basis for a rational approach." European Journal of Clinical Pharmacology 43(3): 235-244.
Bots, M. L., D. Baldassarre, et al. (2007). "Carotid intima-media thickness and coronary atherosclerosis: weak or strong relations?" Eur Heart J 28(4): 398-406.
Carew, T. E., R. N. Vaishnav, et al. (1968). Compressibility of the Arterial Wall. 23: 61-68.
Chuong, C. J. and Y. C. Fung (1983). "Three-dimensional stress distribution in arteries." J Biomech Eng 105(3): 268-74.
Cinthio, M., A. R. Ahlgren, et al. (2005). "Evaluation of an ultrasonic echo-tracking method for measurements of arterial wall movements in two dimensions." IEEE Trans Ultrason Ferroelectr Freq Control 52(8): 1300-11.
Cox, R. H. (1983). Comparison of arterial wall mechanics using ring and cylindrical segments. 244: H298-303.
Fung, Y. C., K. Fronek, et al. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. 237: H620-631.
Hallock, P. (1934). "Arterial elasticity in man in relation to age as evaluated by the pulse-wave velocity method." Arch Intern Med. 54: 770-798.
Hasegawa, H., H. Kanai, et al. (2002). "Modified Phased Tracking Method for Measurement of Change in Thickness of Arterial Wall " Jpn. J. Appl. Phys. 41: 3563-3571.
Hasegawa, H., H. Kanai, et al. (2004). "Detection of lumen-intima interface of posterior wall for measurement of elasticity of the human carotid artery." IEEE Trans Ultrason Ferroelectr Freq Control 51(1): 93-108.
Hasegawa, H., H. Kanai, et al. (2004). "Evaluating the regional elastic modulus of a cylindrical shell with nonuniform wall thickness " Journal of Medical Ultrasonics 31(2): 81-90.
Hayashi, K. (1993). "Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls." J Biomech Eng 115(4B): 481-8.
Hodges, T. C., P. R. Detmer, et al. (1994). "Ultrasound determination of total arterial wall thickness." J Vasc Surg 19(4): 745-53.
Holzapfel, G. A., T. C. Gasser, et al. (2000). "A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models." Journal of Elasticity Volume 61(1): 1-48.
Kanai, H., M. Sato, et al. (1996). "Transcutaneous measurement and spectrum analysis of heart wall vibrations." Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 43(5): 791-810.
Kawasaki, T., S. Sasayama, et al. (1987). "Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries." Cardiovasc Res 21(9): 678-87.
Lanir, Y. and Y. C. Fung (1974). "Two-dimensional mechanical properties of rabbit skin. I. Experimental system." J Biomech 7(1): 29-34.
Lnne, T., H. Stale, et al. (1992). "Noninvasive measurement of diameter changes in the distal abdominal aorta in man." Ultrasound Med Biol 18(5): 451-7.
Nagai, Y., J. L. Fleg, et al. (1999). "Carotid arterial stiffness as a surrogate for aortic stiffness: relationship between carotid artery pressure-strain elastic modulus and aortic pulse wave velocity." Ultrasound Med Biol 25(2): 181-8.
Nichols, W. W. and D. G. Edwards (2001). Arterial Elastance and Wave Reflection Augmentation of Systolic Blood Pressure: Deleterious Effects and Implications for Therapy. 6: 5-21.
Nichols, W., W., Michael F. O''Rourke (2005). " McDonald''s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles 5th ed." Hodder Arnold.
Nolsoe, C. P., U. Engel, et al. (1990). The aortic wall: an in vitro study of the double-line pattern in high- resolution US. 175: 387-390.
O''Leary, D. H., J. F. Polak, et al. (1991). Use of sonography to evaluate carotid atherosclerosis in the elderly. The Cardiovascular Health Study. CHS Collaborative Research Group. 22: 1155-1163.
O''Rourke, M. F., J. A. Staessen, et al. (2002). "Clinical applications of arterial stiffness; definitions and reference values." Am J Hypertens 15(5): 426-44.
Pearson, A. C., R. Guo, et al. (1994). "Transesophageal echocardiographic assessment of the effects of age, gender, and hypertension on thoracic aortic wall size, thickness, and stiffness." Am Heart J 128(2): 344-51.
Peterson, L. H., R. E. Jensen, et al. (1960). Mechanical Properties of Arteries in Vivo. 8: 622-639.
Picano, E., L. Landini, et al. (1988). "Time domain echo pattern evaluations from normal and atherosclerotic arterial walls: a study in vitro." Circulation 77(3): 654-659.
Pignoli, P., E. Tremoli, et al. (1986). "Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging." Circulation 74(6): 1399-406.
Prentice, R. L. (1989). "Surrogate endpoints in clinical trials: definition and operational criteria." Stat Med 8(4): 431-40.
Reneman, R. S., T. Arts, et al. (2006). "Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory." J Vasc Res 43(3): 251-69.
Salonen, R. and J. T. Salonen (1990). "Progression of carotid atherosclerosis and its determinants: a population-based ultrasonography study." Atherosclerosis 81(1): 33-40.
Selzer, R. H., H. N. Hodis, et al. (1994). "Evaluation of computerized edge tracking for quantifying intima-media thickness of the common carotid artery from B-mode ultrasound images." Atherosclerosis 111(1): 1-11.
Shau, Y. W., C. L. Wang, et al. (1999). "Noninvasive assessment of the viscoelasticity of peripheral arteries." Ultrasound Med Biol 25(9): 1377-88.
Sonesson, B., F. Hansen, et al. (1993). "Compliance and diameter in the human abdominal aorta--the influence of age and sex." Eur J Vasc Surg 7(6): 690-7.
Stefanadis, C., C. Stratos, et al. (1990). "Distensibility of the ascending aorta: comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease." Eur Heart J 11(11): 990-6.
van Swijndregt, A. D. M., E. J. Gussenhoven, et al. (1996). "An in vitro evaluation of the line pattern of the near and far walls of carotid arteries using B-mode ultrasound." Ultrasound in Medicine & Biology 22: 1007-1015.
Veller, M. G., C. M. Fisher, et al. (1993). "Measurement of the ultrasonic intima-media complex thickness in normal subjects." J Vasc Surg 17(4): 719-25.
Vito, R. P. and S. A. Dixon (2003). "Blood vessel constitutive models-1995-2002." Annu Rev Biomed Eng 5: 413-39.
Wendelhag, I., T. Gustavsson, et al. (1991). "Ultrasound measurement of wall thickness in the carotid artery: fundamental principles and description of a computerized analysing system." Clinical Physiology (Oxford, England) 11(6): 565-577.
Xie, J., J. Zhou, et al. (1995). "Bending of blood vessel wall: stress-strain laws of the intima-media and adventitial layers." J Biomech Eng 117(1): 136-45.
Yu, Q., J. Zhou, et al. (1993). "Neutral axis location in bending and Young''s modulus of different layers of arterial wall." Am J Physiol 265(1 Pt 2): H52-60.
包舜華;超音波動態影像分析技術與臨床醫學應用;台灣大學應用力學研究所博士論文;2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top