跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永宗
研究生(外文):Yung-Tsung Chen
論文名稱:變進料分率對Frazier型熱擴散塔中提煉重水效率之研究
論文名稱(外文):The Study of Thermal-Diffusion Columns of Frazier-Scheme for the Enrichment of Heavy Water with Flow-Rate Fraction Variation
指導教授:何啟東
指導教授(外文):Chii-Dong Ho
學位類別:碩士
校院名稱:淡江大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:102
中文關鍵詞:提煉重水變進料分率熱擴散塔
外文關鍵詞:SeparationThermal DiffusionFlow-rate ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文的目的主要在討論變進料分率對Frazier型熱擴散塔中提煉重水效率之研究。在固定操作成本的前提下,為了得到較佳的分離效果,我們可以考慮將熱擴散分離程序操作在最佳的進料分率、最佳的管長比和最適的板距之下。
本文主要探討流率比對於串聯多根熱擴散塔提煉重水效率之影響。其中,推導了在不同進料分率下,最佳管長比、最佳串聯管數和最大分離度的公式。同時,針對操作成本為固定的情況下,也推導了含有變進料分率的最佳板距公式。
並藉由理論計算進行實驗,而實驗則在不同的進料分率下進行,各項實驗所得結果與理論推測值相當符合。而由結果顯示,藉由控制適當之進料分率可有效降低混合效應並獲得相當高之分離度改善。

The purpose of this work is to investigate the effect of flow-rate fraction on the performance in flat-plate thermal diffusion columns of the Frazier scheme. Considerable improvement in performance is obtained , when a Frazier scheme is operated at the best corresponding constant ratio of column length varied at the optimum plate-spacing under the considerations of fixed operating expense.
The separation theory of the Frazier-scheme thermal-diffusion columns with column length varied at a constant ratio has been investigated. The equations for estimating the best ratio of column length , the work developed best column number as well as the maximum degree of separation with flow-rate fraction variation were developed. The equations for estimating optimum plate-spacing for maximum separation with flow-rate fraction variation have also been developed.
Experimental works for various flow-rate fraction of heavy water system were also conducted. The results quantitatively confirm with the prediction of the theory. It was shown that the undesirable remixing effect could be effectively reduced by controlling flow-rate fraction and a substantial improvement in separation efficiency attained.

目錄
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 沿革 1
1.2 熱擴散之應用 7
1.3 重水的應用及重要性 8
1.4 研究的動機及目的 10
第二章 串聯多根Frazier-scheme熱擴散塔的分離度公式 12
2.1.1 單根管的分離度公式 15
2.1.2 理論模擬 20
2.2.1 串聯n根管時的分離度公式 30
2.2.2 理論模擬 38
第三章 變進料分率對串聯多根Frazier-scheme熱擴散塔中最佳板距的影響 46
3.1.1 單根管之r和板距2w對分離度的影響 48
3.1.2 理論模擬 49
3.2.1 串聯n根管時r和板距2w對分離度的影響 54
3.2.2 理論模擬 56
第四章 變進料分率對串聯多根Frazier-scheme熱擴散塔中最佳管長增加比率的影響 61
4.1 以管長比 、串聯管數 和進料分率 為變數之分離度公式 61
4.2 不同進料分率 之最佳串聯管數 、最大分離度 及分離度提高率 67
第五章 實驗裝置及操作 81
第六章 結論 94
符號說明 97
參考文獻 99

參考文獻
[1] Dufour L., “The Diffusion Thermoeffect,” Arch. Sci. (Geneva) 45 , 9 (1872).
[2] Enskog D., “A Generalization of Maxwell’s Second Kinetic Gas Theory,” Physik. Z., 12 , 56 (1911).
[3] Chapman S. and Dootson F. W., “Thermal Diffusion,” Phil. Mag., 33, 248 (1917).
[4] Chapman S., “Thermal Diffusion of Rare Constituents in Gas Mixtures And Isotopes,” Phil. Mag., 7, 1 (1929).
[5] Clusius K. and Dickel G., “New Process for Separation of Gas Mixtures and Isotopes,” Naturwiss., 26, 546 (1938).
[6] Clusius K. and Dickel G., “The Separation-Tube Process for Liquids,” Naturwiss., 27, 148 (1939).
[7] Yeh H. M. and Yang S. C., “The Enrichment of Heavy Water in A Batch-Type Thermal Diffusion Column” Chem. Eng. Sci., 39 , 1277(1984).
[8] 潘家寅譯“核燃料”,徐氏基金會出版, p95 (1967).
[9] Powers J. E. and Wilke C. R., “Separation in Liquids by Thermal Diffusion,” AIChE. 3, 213 (1957).
[10] Cheuh P. L. and Yeh H. M., “Thermal Diffusion in a Flat-Plate Column Inclined for Improved Performance” AIChE , 13, pp.37-40 (1967).
[11] Yeh H. M., “The Effect of Plate Spacing on the Degree of Separation in Inclined Thermal Diffusion Columns With Fixed Operating expense,” Sep. Sci. Technol., 18, 585-592 (1983).
[12] Washall T. A. and Melpolder F.W., “Improving The Separation Efficiency of Liquid Thermal Diffusion Columns”, Ind. Eng. Chem. Proc. Des. Dev. 1, 26 (1962).
[13] Yeh H. M. and Ward H. C., “The Improvement In Separation of Concentric Tube Thermal Diffusion Columns”, Chem. Eng. Sci., 26, 937-947 (1970).
[14] Rabinovich G. D., Ivakhnik V. P., Zimina K. I. And Sorokina N. G., “Use of Spiral Inserts In Thermal-Diffusion Columns” Inzh. Fiz. Zh., 35, 278 (1978).
[15] Yeh H. M. and Ho F. K., “A Study of the Separation Efficiency of Wired Thermal Diffusion Columns with Tubes Rotating in Opposite Directions” Chem. Eng. Sci. , 30, 1381-1385 (1975).
[16] Yeh H. M. and Tsai S. W., “Improvement of Separation of Cocentric-Tube Thermal Diffusion Columns with Viscous Heat Generation under Consideration of the Curvature Effect” Sep. Sci. Technol., 16, 63 (1981).
[17] Yeh H. M. and Hsieh S. J., “A study on the Separation Efficiencies of Rotating-Tube Wired Thermal-Diffusion Columns under Higher Flow-Rate Operations” Ibid., 18 , 1065-1079 (1983).
[18] Sullivan L. J., Ruppel T. C. and Willingham C. B., “Rotary and Packed Thermal Diffusion Fractionating Columns for Liquids” Ind. Eng. Chem., 47, 208 (1955).
[19] Emery A. E. and Lorenz M., “Thermal Diffusion in a Packed Column” AIChE , 9, 660 (1963).
[20] Lorenz M. and Emery A. H., “The Packed Thermal Diffusion Column” Chem. Eng. Sci. , 11, 16 (1959).
[21] Frazier D., “Analysis of Transverse-Flow Thermal Diffusion” Ind. Eng. Chem. Proc. Des. Dev., 1, 237 (1962).
[22] Grasselli R. and Frazier D., “A Comparative Study of Continuous Liquid Thermal Diffusion Systems” Ibid., 1, 241 (1962).
[23] Frazier D., U.S. Patent 2, 824, 647 (Feb. 25, 1958).
[24] Frazier D., U.S. Patent 2, 2, 827, 171 (March 18, 1958).
[25] Frazier D., U.S. Patent 2, 2, 827, 172 (March 18, 1958).
[26] Grasselli R. and Brown G. R., “Full-Scale Thermal Diffusion Equipment” Chem. Eng. Prog., 57, 59 (1961).
[27] Yeh H. M. and Chu T. Y., “A Study of the Separation Efficiency of Continues-Type Packed Thermal Diffusion Columns” Chem. Eng. Sci., 29, 1421-1425 (1974).
[28] Jones R. C. and Furry W. H., “The Separation of Isotopes by Thermal Diffusion”, Rev. Mod. Phys. , 18, 151 (1946).
[29] Yeh H. M., and Yang S. C., “Experimental Studies on the Separation of Deuterium Oxide in Continues Thermal Diffusion Column for Low Concentration Range” Sep. Sci. Technol., 20 , 687 (1985)
[30] H. M. Yeh. “Optimum Plate-Spacing for the Best Performance of the Enrichment of Heavy Water in Flat-Plate Thermal-Diffusion Columns of the Frazier Scheme,” Separation Science and Technology , 31 , 2543-2556 , (1996).
[31] H. M. Yeh. “Modified Frazier-Scheme thermal - diffusion columns with column lenth varied at a constant ratio” , Sep. Technol. , 2 , 192-196 (1992).
[32] H. M. Yeh. “Enrichment of Heavy Water in Flat-Plate Thermal Diffusion Columns of the Frazier Scheme Incloned for Improved Performance” , Separation Science and Technology , 30 , 1025—1038 (1995).
[33] G. D. Rabinovich , “Theory of Thermodiffusion Separation According to the Frazier Scheme.” Inzh. -Fiz. Zh. , 31 ,514—552 (1976).
[34] A. V. Sovorov and Rabinovich G. D., “Theory of a Thermal Diffusion Apparatus with Transverse Flows.” Inzh. Fiz. Zh. , 41 , 231 — 238 (1981).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top