跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/20 12:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃泓縉
研究生(外文):Hung-Jin Huang
論文名稱:以虛擬篩選方法針對H1N1設計雙重抑制劑
論文名稱(外文):Virtual screening and drug design for H1N1 dual-target inhibitors
指導教授:鍾景光鍾景光引用關係陳語謙陳語謙引用關係
指導教授(外文):Jing-Gung ChungCalvin Yu-Chian Chen
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:78
中文關鍵詞:血球凝集素神經氨酸酶分子對接構效關係分子動力模擬
外文關鍵詞:hemagglutininneuraminidasedockingquantitative structure-activity relationshipmolecular dynamics simulations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血球凝集素及神經氨酸酶為流感病毒株表面上兩種主要的醣蛋白,此類的醣蛋白皆為抑制病毒侵犯宿主的治療目標。自2009年,許多報導指出H1N1流感病毒的大流行,另外抗藥性的問題也越來越被重視。因此,本研究的目的在於設計出針對病毒株兩種主要的醣蛋白具有雙重抑制效果的新穎藥物。在實驗中,以基於結構設計藥物與配體設計藥物的方式來分析目標蛋白與配體之間的作用關係,並以分子動力的方式了解受體與配體的作用。新型的H1N1表面醣蛋白之三維結構利用同源模擬的技術建構,所建立的三維結構用於篩選TCM資料庫。分子對接的結果中,根據H1及N1的Dock Score總和做排序並與克流感及瑞樂莎做比較,挑選出前10名候選的化合物。這10個化合物的對接結果提出五個主要的特性,在構效關係的模組中皆符合力場、電性、氫鍵受體與供體的性質,而這些特性也符合H1及N1的胺基酸。最後在20ns的模擬過程上,發現到2-aminopyridinium基團在鍵結方面演著重要的特性。基於結構設計藥物與配體設計藥物的方式,除了能提供對H1及N1在藥物設計上的資訊外,所挑選出化合物也於日後的藥物發展上可被建議為抑制流感病毒的藥物。

Influenza viruses contain two major surface glycoproteins, hemagglutinin and neuraminidase, which are therapeutic targets for inhibiting influenza viruses from infecting host cell. Pandemic of H1N1/09 virus has been reported, and drug resistance was regarded as an important issue since 2009. Thus, the purpose of this research is to design novel potent dual inhibitors for the two surface glycoproteins on H1N1 virus. In this study, structure-based and ligand-based drug designs were performed to analyze interactions between target proteins and ligands, and molecular dynamics (MD) simulations were carried out to analyze the interaction of receptor-ligand complexes. Potent derivatives from structure-based design were ranked by sum of DockScore of two target proteins (H1 and N1) and were compared with Tamiflu (Oseltamivir) and Relenza (Zanamivir) to select the top 10 candidates. Among the scaffold of top 10 candidates, five key features were recognized for binding to H1 and N1. In quantitative structure-activity relationship models, these features were able to fit with their steric, electrostatic, hydrogen bond acceptor and donor fields. These fields were close to key residues of H1 and N1 binding site. Finally, 2-aminopyridinium group was noticed to play an important role in binding ability during 20ns MD simulations. From structure-based and ligand-based designs, we hope that we provided useful information for designing anti-viral compounds targeting H1 and N1, and we recommend the top 10 candidates from our experiments for further drug development testing.

總目錄
摘要...............................................................................................................i
Abstract........................................................................................................ii
總目錄..........................................................................................................iii
表目錄...........................................................................................................v
圖目錄..........................................................................................................vi
一、研究之緣起與目的.................................................................................1
二、研究之方法與理論.................................................................................4
2-1病毒之序列比對與結構模擬..........................................................4
2-2驗證模擬的結構..............................................................................6
2-3中草藥資料庫的建立......................................................................7
2-4目標蛋白的分子對接......................................................................7 2-5以 H1及N1的模擬蛋白生成衍生物.............................................8
2-6衍生物的五法則(Lipinski''s Rule of Five)篩選...............................8
2-7建立構效關係(QSAR)的預測模組.................................................9
2-8分子動力模擬的設定....................................................................10
三、結果與討論..........................................................................................12
3-1同源模擬的結果............................................................................12
3-2篩選的結果與衍生物結構的分析................................................13
3-3衍生物的特性與結合能分析........................................................14
3-4衍生物的特性與目標蛋白對接姿勢分析....................................15
3-5 CoMFA 與CoMSIA預測模組對五種主要特性的分析............18
3-6 分子動力模擬對分子作用力的分析...........................................20
四、結論.......................................................................................................24
五、參考文獻...............................................................................................25六、發表論文...............................................................................................74
6-1 SCI論文.........................................................................................74
6-2 EI論文............................................................................................75
6-3研討會論文....................................................................................77

表目錄

表1. 用於建立CoMFA模組與CoMSIA模組的訓練組結構.................30
表2. 對照組的分子對接結果....................................................................31
表3. 從中草藥資料庫初步篩選的81個化合物對接結果......................32
表4. 基於H1結構生成的衍生物之分子對接結果.................................35
表5. 基於N1結構生成的衍生物之分子對接結果..................................39
表6. 前十名衍生物的分子對接結果........................................................47
表7. 篩選後前十名衍生物與其初始化合物的化學結構........................48
表8. CoMFA模組與CoMSIA模組的PLS分析結果.............................49
表9. CoMFA模組與CoMSIA模組對訓練組化合物的預測能力..........50
表10. Xylopine_2 在H1與N1模擬結構中,從20ns分子動力模擬下所取得的氫鍵資料...............................................................................51
表11. Rosmaricine_14在H1與N1模擬結構中,從20ns分子動力模擬下所取得的氫鍵資料.......................................................................52

圖目錄

圖1. 序列比對結果....................................................................................53
圖2. H1與N1的模擬結構..........................................................................54
圖3. Ramachandran plot的分析結果.........................................................55
圖4. Profile-3D的分析結果.......................................................................56
圖5. 前10名的衍生物在H1模擬結構所預測出來的作用情形.............57
圖6. 前10名的衍生物在N1模擬結構所預測出來的作用情形.............58
圖7. 五個重要特性....................................................................................59
圖8. 以Atom-Fit的方式對24個訓練組化合物其骨架疊合的結果......60
圖9. CoMFA在Rosmaricine_14與H1蛋白的堆疊結果.........................61
圖10. CoMSIA在Rosmaricine_14與H1蛋白的堆疊結果......................62
圖11. CoMFA在Rosmaricine_14與N1蛋白的堆疊結果......................63
圖12. CoMSIA在Rosmaricine_14與N1蛋白的堆疊結果......................64
圖13. Xylopine_2在(a) H1與(b)N1模擬結構於20ns分子動力模擬下的RMSD結果.................................................................................................65
圖14. Rosmaricine_14在(a) H1與(b) N1模擬結構於20ns分子動力模擬下的RMSD結果.........................................................................................66

圖15. 在20ns分子動力模擬下,(a) Xylopine_2 與(b) Rosmaricine_14 的三個關鍵特性與其原子的位置.............................................................67
圖16. H1-Xylopine_2複合體在20ns模擬過程中產生氫鍵的分子間距離.................................................................................................................68
圖17 : N1- Xylopine_2複合體在20ns模擬過程中產生氫鍵的分子間距離.................................................................................................................69
圖18: N1在20ns模擬過程中與2-aminopyridinium基團產生氫鍵的分子間距離.....................................................................................................70
圖19: H1- Rosmaricine_14複合體在20ns模擬過程中產生氫鍵的分子間距離.............................................................................................................71
圖20: 2-aminopyridinium與Hydroxyl 基團與在20ns模擬過程中對H1產生氫鍵的分子間距離.............................................................................72
圖21: N1- Rosmaricine_14複合體在20ns模擬過程中產生氫鍵的分子間距離.............................................................................................................73


[1] J.S. Oxford, Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev Med Virol. 10 (2000) 119-133.
[2] N.P. Johnson, J. Mueller, Updating the accounts: global mortality of the 1918-1920 "Spanish" influenza pandemic. Bull Hist Med. 76 (2002) 105-115.
[3] J.F. Wang, D.Q. Wei, K.C. Chou, Insights from investigating the interactions of adamantane-based drugs with the M2 proton channel from the H1N1 swine virus. Biochem Biophys Res Commun. 388 (2009) 413-417.
[4] M. von Itzstein, W.Y. Wu, G.B. Kok, M.S. Pegg, J.C. Dyason, B. Jin, T. Van Phan, M.L. Smythe, H.F. White, S.W. Oliver, et al., Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 363 (1993) 418-423.
[5] C.U. Kim, W. Lew, M.A. Williams, H. Liu, L. Zhang, S. Swaminathan, N. Bischofberger, M.S. Chen, D.B. Mendel, C.Y. Tai, W.G. Laver, R.C. Stevens, Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc. 119 (1997) 681-690.
[6] P.K. Cheng, T.W. Leung, E.C. Ho, P.C. Leung, A.Y. Ng, M.Y. Lai, W.W. Lim, Oseltamivir- and amantadine-resistant influenza viruses A (H1N1). Emerg Infect Dis. 15 (2009) 966-968.
[7] L. Guo, R.J. Garten, A.S. Foust, W.M. Sessions, M. Okomo-Adhiambo, L.V. Gubareva, A.I. Klimov, X. Xu, Rapid identification of oseltamivir-resistant influenza A(H1N1) viruses with H274Y mutation by RT-PCR/restriction fragment length polymorphism assay. Antiviral Res. 82 (2009) 29-33.
[8] A. Moscona, Global transmission of oseltamivir-resistant influenza. N Engl J Med. 360 (2009) 953-956.
[9] E. De Clercq, Antiviral agents active against influenza A viruses. Nat Rev Drug Discov. 5 (2006) 1015-1025.
[10] X. Liu, Z. Xiu, C. Hao, Drug-resistant molecular mechanism of CRF01_AE HIV-1 protease due to V82F mutation. J Comput Aided Mol Des. 23 (2009) 261-272.
[11] M. Mozzicafreddo, M. Cuccioloni, V. Cecarini, A.M. Eleuteri, M. Angeletti, Homology modeling and docking analysis of the interaction between polyphenols and mammalian 20S proteasomes. J Chem Inf Model. 49 (2009) 401-409.
[12] H.F. Ji, H.Y. Zhang, Multipotent natural agents to combat Alzheimer''s disease. Functional spectrum and structural features. Acta Pharmacol Sin. 29 (2008) 143-151.
[13] Y. Li, B. Zhou, R. Wang, Rational design of Tamiflu derivatives targeting at the open conformation of neuraminidase subtype 1. J Mol Graph Model. 28 (2009) 203-219.
[14] K. Kaur, T.T. Talele, Structure-based CoMFA and CoMSIA study of indolinone inhibitors of PDK1. J Comput Aided Mol Des. 23 (2009) 25-36.
[15] Q.Q. Xie, H.Z. Xie, J.X. Ren, L.L. Li, S.Y. Yang, Pharmacophore modeling studies of type I and type II kinase inhibitors of Tie2. J Mol Graph Model. 27 (2009) 751-758.
[16] J. Du, B. Lei, J. Qin, H. Liu, X. Yao, Molecular modeling studies of vascular endothelial growth factor receptor tyrosine kinase inhibitors using QSAR and docking. J Mol Graph Model. 27 (2009) 642-654.
[17] J. Stevens, A.L. Corper, C.F. Basler, J.K. Taubenberger, P. Palese, I.A. Wilson, Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science. 303 (2004) 1866-1870.
[18] R.J. Russell, L.F. Haire, D.J. Stevens, P.J. Collins, Y.P. Lin, G.M. Blackburn, A.J. Hay, S.J. Gamblin, J.J. Skehel, The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 443 (2006) 45-49.
[19] J.U. Bowie, R. Luthy, D. Eisenberg, A method to identify protein sequences that fold into a known three-dimensional structure. Science. 253 (1991) 164-170.
[20] R. Luthy, J.U. Bowie, D. Eisenberg, Assessment of protein models with three-dimensional profiles. Nature. 356 (1992) 83-85.
[21] N.L. Allinger, Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99 (1997) 8127-8134.
[22] C.M. Venkatachalam, X. Jiang, T. Oldfield, M. Waldman, LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model. 21 (2003) 289-307.
[23] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 46 (2001) 3-26.
[24] Q. Zhang, J. Yang, K. Liang, L. Feng, S. Li, J. Wan, X. Xu, G. Yang, D. Liu, S. Yang, Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling. J Chem Inf Model. 48 (2008) 1802-1812.
[25] J.-P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23 (1977) 327–341.
[26] R.E. Amaro, X. Cheng, I. Ivanov, D. Xu, J.A. McCammon, Characterizing loop dynamics and ligand recognition in human- and avian-type influenza neuraminidases via generalized born molecular dynamics and end-point free energy calculations. J Am Chem Soc. 131 (2009) 4702-4709.
[27] Q.S. Du, S.Q. Wang, K.C. Chou, Analogue inhibitors by modifying oseltamivir based on the crystal neuraminidase structure for treating drug-resistant H5N1 virus. Biochem Biophys Res Commun. 362 (2007) 525-531.
[28] T. Udommaneethanakit, T. Rungrotmongkol, U. Bren, V. Frecer, M. Stanislav, Dynamic behavior of avian influenza A virus neuraminidase subtype H5N1 in complex with oseltamivir, zanamivir, peramivir, and their phosphonate analogues. J Chem Inf Model. 49 (2009) 2323-2332.
[29] P.M. Dominiak, A. Volkov, A.P. Dominiak, K.N. Jarzembska, P. Coppens, Combining crystallographic information and an aspherical-atom data bank in the evaluation of the electrostatic interaction energy in an enzyme-substrate complex: influenza neuraminidase inhibition. Acta Crystallogr D Biol Crystallogr. 65 (2009) 485-499.
[30] M. von Itzstein, The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 6 (2007) 967-974.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 古清美:〈劉蕺山對陽明致良知說之繼承與發展〉,《臺大中文學報》第1期,民國74年11月,頁367-396,收錄在古清美著《明代理學論文集》,臺北:大安出版社, 1990年5月,頁209-249。
2. 李明輝:〈劉蕺山對朱子理氣論的批判〉,《漢學研究》第19卷第2期,總第39期,民國90年12月,頁1-32。收錄於李明輝著:《四端與七情-關於道德情感的比較哲學探討》,臺北:臺灣大學出版,2005年6月。
3. 古清美:〈蕺山學的儒釋之辨〉,《佛學研究中心學報》第2期,民國86年7月,頁179-209。
4. 古清美:〈劉蕺山對周濂溪誠體思想的闡發及其慎獨之學〉,《幼獅學誌》第19卷第2期,民國75年10月,頁79-111。
5. 王瑞昌:〈論劉蕺山的無善無惡思想〉,《鵝湖月刊》第25卷第9期,總第297期,民國89年3月,頁18-32。
6. 王汎森:〈清初思想趨向與「劉子節要」一兼論清初蕺山學派的分裂〉,《中央研究院歷史語言研究所集刊》第68卷第2期,民國86年6月,頁417-448。
7. 王汎森:〈明末清初的人譜與省過會〉,《中央研究院歷史語言研究所集刊》,第63卷第3期,民國82年7月,頁679-712。
8. 王汎森:〈清初的講經會〉,《中央研究院歷史語言研究所集刊》第68卷第3期,民國86年9月,頁503-588。
9. 方祖猷:〈黃宗羲與甬上弟子的學術分歧-兼論蕺山之學的傳播和沒落〉,《香港中文大學中國文化研究所學報》第22期,民國80,頁336-350。
10. 莊溎芬:《王陽明與劉蕺山工夫論之比較》,臺北:國立臺灣師範大學國文所碩士論文,民國81年6月。收錄在《國立臺灣師範大學國文研究所集刊》第38期,民國83年6月,頁735-832。
11. 李興源:〈劉蕺山「誠意之學」探析〉,《中國國學》第17期,民國78年11月,頁289-298。
12. 李翔海:〈尋求宗教、哲學與科學精神的統一:論現代新儒學的內在向度〉,孔孟學報第78期,2000年9月,頁283-284。
13. 李中華:〈人類文化變遷中的儒學:仍從儒家的「天人合一」說起〉孔孟月刊 第41卷,第9期,民國92年5月, 頁23-25。
14. 林月惠:〈劉蕺山對《大學》《誠意》章的詮釋〉,「朱子與宋明理學」學術研討會(臺北:鵝湖月刊雜誌社, 2000年12月23 -25日),後再發表於《中國文哲研究集刊》第19期,民國90年9月,頁407-449。
15. 林月惠:〈從宋明理學的「性情論」考察劉蕺山對《中庸》「喜怒哀樂」的詮釋〉,《中國文哲研究集刊》第25期,民國93年9月,頁177-218。