跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳麒安
研究生(外文):CHEN, CHI-AN
論文名稱:不同觸媒對鎂合金微弧氧化層披覆鎳磷合金之特性研究
論文名稱(外文):Nickel-phosphorus alloys deposited on magnesium alloy micro-arc oxidation layer using different catalysts
指導教授:葛明德葛明德引用關係
指導教授(外文):Ger, Ming-Der
口試委員:葛明德林招松簡順億侯光煦李弘彬
口試日期:2017-07-11
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:114
中文關鍵詞:鎂鋰合金微弧氧化鎳磷合金附著力觸媒耐蝕性
外文關鍵詞:magnesium alloysMicro-arc oxidationnickel-phosphorus alloysadhesioncatalystscorrosion resistance
相關次數:
  • 被引用被引用:6
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
鎂鋰合金(LZ91)目前為實用金屬中最輕者,其優點有質量輕(類似塑膠)、較高強度與比剛性和較佳的散熱性等優點,但是鎂鋰合金極容易受到腐蝕,這嚴重影響它在實際生活的應用。本研究採用濕式法製程中的微弧氧化,製備一層具有高耐蝕性之氧化膜以提升其耐蝕性,經過微弧氧化處理的鎂鋰合金表面為氧化層視覺上較不美觀,且其表面不具導電性,因此在微弧氧化層上披覆鎳磷層,但是微弧氧化層不具任何活性,須將其浸泡在具有催化活性的溶液中,因此能讓鎳離子藉由催化而均勻的塗覆在微弧氧化的鎂合金上,以提升實用性與美觀性。
首先探討不同微弧電壓對微弧氧化層耐蝕性的影響,找出最佳操作條件後,再探討不同觸媒的特性及披覆於最佳條件微弧氧化層上之影響,最後以化學鍍方式披覆鎳磷層,觀察其耐蝕性之影響。實驗中以SEM觀察其表面形貌及橫截面形貌,電化學試驗線性極化曲線、鹽霧試驗檢測其鍍層耐蝕性,使用光散射儀器分析觸媒粒徑大小,穩定性分析儀檢測觸媒之穩定性,接觸角分析儀器來分析觸媒與微弧氧化層之間的親和性。由結果得知,以雙極脈衝電壓400V時,能製備平整且緻密的氧化層,其耐蝕性較佳,在耐腐蝕測試中,電化學試驗得到腐蝕電流為1.4×10-7 A/cm2,鹽霧測試可通過48 小時無任何鏽點與變色。以不同觸媒披覆於最佳微弧氧化層上,由結果得知pH7的N型觸媒有較佳的表現,其有效粒徑大小為最小,穩定性較佳,與微弧氧化層之間親和性最佳以及對微弧氧化層的耐蝕性影響較小,後續以化學鍍方式披覆鎳磷層時,其鎳磷鍍層可通過24小時鹽霧,為最佳製程條件。

Magnesium-lithium alloy(LZ91) is currently the lightest of practical metal, its advantages are light (similar to plastic), higher strength, specific rigidity and better heat dissipation. Magnesium alloy is extremely to corrosion which seriously affecting its application in real life. In this study, Micro - arc oxidation of wet - type method was used to prepare a oxide film on magnesium alloy which improves corrosion resistance. The surface of the magnesium-lithium alloy treated by micro-arc oxidation was not beautiful. In corrosive environment, the outside layer is prone to failure. In order to solve this problem, the outer layer of oxide film to seal, which can prevent corrosion factor invasion. The oxide layer is without any activity, which needs to soak in catalytic active solution, therefore nickel ions can be catalyzed and evenly coated on the micro-arc oxidation of magnesium alloy to enhance the corrosion resistance and aesthetics.
First discussion different voltage on corrosion resistance of micro-arc oxidation layer. After finding the best operating conditions, and then explore the characteristics of different catalysts and the effect of coating on the best conditions of micro - arc oxidation. Finally, the micro-arc magnesium oxide alloy with different catalyst was coated with nickel-phosphorus layer by electroless plating, and observe the corrosion resistance. In the experiment, the surface morphology and cross-sectional were observed by scanning electron microscopy(SEM). Electrochemical test linear polarization curve and salt spray to detect the corrosion resistance. The size of the catalyst particles is analyzed by a light scattering instrument. Catalyst stability is analyzed by stability analysis instrument. Contact angle analysis instrument analyzes the affinity between the catalyst and the micro-arc oxidation layer.

The experimental results show that: the flat and dense oxide layer was prepared at a Bipolar pulses voltage of 400 V, which corrosion resistance is better. In the corrosion resistance test, the electrochemical test obtained corrosion current of 1.4 × 10-7 A / cm2, salt spray test can be passed 48 hours. Next, with different catalyst on the best micro-arc oxidation layer. The results show that the pH value of the 7 N type catalyst has a better performance. Its effective particle size is the smallest, the stability is better. The affinity with the micro-arc oxide layer is best and the corrosion resistance to the micro-arc oxide layer is less affected. Subsequent to electroless nickel-phosphorus layer, which can pass salt spray 24 hours . It is the best process conditions.

目錄

誌謝
摘要
ABSTRACT
目錄
表目錄
圖目錄
1.緒論
1.1.前言
1.2.研究動機與目的
2.文獻回顧與理論基礎
2.1.鎂合金的簡介
2.2.鎂合金之分類
2.3.鎂合金基本腐蝕性質
2.4.鎂合金表面處理技術之介紹
2.5.鎂合金微弧氧化的技術及發展
2.6.化學鍍法
2.6.1.化學鍍鎳基的沿用和發展
2.6.2.化學鍍Ni-P的反應機構
2.7.腐蝕機構原理
2.7.1.動電位極化曲線
3.實驗方法
3.1.微弧氧化製程
3.1.1.試片前處理與鍍液的配製
3.1.2.微弧氧化處理
3.2.觸媒製程
3.3.金屬化製程
3.3.1.試片前處理與鍍液的配製
3.3.2.金屬化處理
3.4.分析與檢測
3.4.1.粒徑大小分析
3.4.2.接觸角分析
3.4.3.穩定性檢測
3.4.4.表面形貌觀察
3.4.5.橫截面及厚度觀察
3.4.7.耐蝕性分析
4.結果與討論
4.1.不同電壓對LZ91微弧氧化層之影響
4.1.1.表面形貌與橫截面之觀察
4.1.2.極化曲線量測
4.1.3.鹽霧試驗
4.1.4.孔洞大小與數量之統計
4.2.不同觸媒條件對LZ91微弧氧化層之影響
4.2.1.酸性觸媒(pH=3)
4.2.1.1.粒徑大小分析
4.2.1.2.接觸角量測
4.2.1.3.穩定性分析
4.2.1.4.SEM表面形貌觀察
4.2.1.5.極化曲線量測
4.2.1.6.鹽霧試驗
4.2.2.中性觸媒酸(pH=7)
4.2.2.1.粒徑大小分析
4.2.2.2.接觸角量測
4.2.2.3.穩定性分析
4.2.2.4.SEM表面形貌觀察
4.2.2.5.極化曲線量測
4.2.2.6.鹽霧試驗
4.3.LZ91微弧氧化層披覆化學鍍鎳磷之特性研究
4.3.1.表面形貌與橫截面之觀察
4.3.2.極化曲線量測
4.3.3.鹽霧試驗
4.4.反應機制探討
4.4.1.微弧氧化層之形成機制
4.4.2.微弧氧化層塗覆觸媒之示意圖
4.4.3.化學鍍鎳磷之腐蝕機制
5.結論
6.未來研究方向
參考文獻

參考文獻

[1]Wang, J. Y., Liu, C. M., Chen, W. K., Liu, Y. M., and Ger, M. D., “Microstructure and Corrosion Resistance of Anodized Mg-9 mass% Li-1 mass% Zn Alloy” Materials Transactions, Vol. 49, pp. 1355-1358, 2008.
[2] Hanko, G. Antrekowitsch, H. and Ebner, P., Recycling automotive magnesium scrap, JOM, February Vol. 54, pp. 51-54, 2002.
[3] 陳振華等編著,鎂合金,化學工業出版社,材料科學與工程出版中心, 北京,2004年7月。
[4] 程偉堃,劉沖明,「鎂鋰(LZ91)合金陽極膜耐蝕性能與微觀結構分析」, 鎂合金產業通訊,第30期,33~39頁,94年8月。
[5] 邱垂弘,王文寬,「超輕鎂鋰合金性質及其應用」,工業材料雜誌,233 期,163~170頁,95年5月。
[6] Guo-Hua Lv, Huan Chen,“Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy,” Current Applied Physics, 9, pp. 126–130, 2009.
[7] Mordike, B.L. Ebert, T.“Magnesium Properties-applications-potential,” Materials Science and Engineering, A Vol. 302, pp. 37-45, 2001.
[8] Shi Lingling, XuYongjun, Li Kang , Yao Zhongping, Wu Songquan “Effect of additives on structure and corrosion resistance of ceramic coatings on Mg–Li alloy by micro-arc oxidation” Current Applied Physics, Vol. 10, pp. 719-723, 2010.
[9]Choi, Y.-I. Salman, S. Kuroda, K. Okido, M. Electrochim. Acta, Vol. 97, pp. 313–319, 2013.
[10]L. Zeng, S. Yang, W. Zhang, Y. Guo, C. Yan, Electrochim. Acta, Vol. 55 pp.3376–3, 2010.
[11]Li, Z. H., Chen, Z. Y., Liu S. S., Zheng, F., and Dai, A. G., “Corrosion and Wear Properties of Electroless Ni-P Plating Layer on AZ91D Magnesium Alloy,” Transactions of Nonferrous Metals Society of China, Vol. 18,pp. 819-824, 2008.
[12]Ambat, R., and Zhou, W., “Electroless Nickel-Plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure amd Plating Parameters,” Surface and Cating Technology, Vol. 179, pp. 124-133, 2004.
[13]Avedesian, M., and Baker, H., Magnesium and Magnesium Alloy, ASM Specialty Handbook, ASM, Metal Park, Ohio, pp. 1-51, 1999.
[14]程偉堃,李九龍,王建義,張進龍,葛明德,氟離子濃度對鎂鋰合金(LZ91)微弧氧化膜層影響之研究,防蝕工程,第二十卷第三期,249-251頁,2006。
[15]Shi, L. L., Xu, Y. J., Li, K., Yao, Z. P., and Wu, S. Q., “Effect of additives on structure and corrosion resistance of ceramic coatings on Mg–Li alloy by micro-arc oxidation,” Current Applied Physics, Vol. 10, pp. 719-723, 2010.
[16]Avedesion, M. and Baker, H., Magnesium and magnesium alloys, ASTM Specialty Handbook, 1999.
[17]Nordlien, J. H., Ono, S., Masuko, N., and Nisancioglu, K., “Morphology and Structure of Oxide Films Formed on Magnesium by Exposure to Air and Water,” Journal of The Electrochemical Society, Vol. 142, pp. 3320-3322, 1995.
[18]Vermilyea, D. A., and Kirk, C. F., “Studies of Inhibition of Magnesium Corrosion,” Journal of The Electrochemical Society, Vol. 116, pp. 1487-1492, 1969.
[19]Pourbaix, M., “Atlas of Electrochemical Equilibria in Aqueous Solutions”, National Association of Corrosion Engineers, Houston, pp. 139-145, 1974.
[20]Hanawalt, J. D., Nelson, C. E., and Peloubet, J. A., “Corrosion Studies of Magnesium and Its Alloys, ” Trans.AIME, Vol. 146, pp. 273-299, 1942.
[21]歐長穎,“鎂合金微弧氧化膜披覆化學鍍鎳與腐蝕特性之研究”,碩士論文,國防大學中正理工學院化學工程碩士班,桃園,第31-56頁,2014。
[22]柯賢文,表面與薄膜處理技術,全華圖書股份有限公司,台北,第四章,2007。
[23]何鎮揚、葉名倉,“物理氣相沉積法(Physical Vapor Deposition,PVD)”,國科會高瞻自然科學教學資源平台,2007。
[24]Hoche, H., Gro, S., and Oechsner, M., “Development of New PVD Coatings for Magnesium Alloys with Improved Corrosion Properties, ” Surface & Coatings Technology, In Press, 2014.
[25]Hoche, H., Gro, S., Troßmann T., Schmidt J., and Oechsner M., “PVD Coating and Substrate Pretreatment Concepts for Magnesium Alloys by Multinary Coatings Based on Ti(X)N, ” Surface & Coatings Technology, Vol. 228, pp. 336-341, 2013.
[26]Zhang, Z., Yu, G., Ouyang, Y., He, X., Hu, B, Zhang, J., and Wu, Z., “Studies on Influence of Zinc Immersion and Fluoride on Nickel Electroplating on Magnesium Alloy AZ91D”Applied Surface Science, Vol. 255, pp. 7773-7779, 2009.
[27]Tang, J., and Azumi, K., “Effect of Copper Pretreatment on the Zincate Process and Subsequent of a Protective Copper/Nikel Deposit on the AZ91D Magnesium Alloy,” Electrochimica Acta, Vol. 56, pp. 7773-7779, 2011.
[28]Shao, Z., Cai, Z., Hu, R., and Wei, S., “The study of Electroless Nickel Plating Directly on Magnesium Alloy, ” Surface & Coatings Technology , Vol. 249, pp.42-47, 2014.
[29]Mahallawy, N. E., Bakkar, A., Shoeib, M., Palkowski, H., and Neubert, V., “ Electroless Ni-P coating of Different Magnesium Alloys, ” Surface & Coatings Technology, Vol. 202, pp.5151-5157, 2008.
[30]Gu, C. J., Li, G., Niu, L., and Jiang, Z., “Electroless Ni-P Plating on AZ91D Magnesium Alloy from a Sulfate Solution,” Journal of Alloys and Compounds, Vol. 391, pp.104-109, 2005.
[31]Huo, H., Li, Y., and Wang, F., “Corrosion of AZ91D Magnesium Alloy with a Chemical Conversion Coating and Electroless Nickel Layer, ” Corrosion Science,Vol. 46, pp.1467-1477, 2004.
[32]Zhang, W. X., Huang, N., He, J. G., Jiang, Z. H., Jiang, Q., and Lian, J. S., “Electroless Deposition of Ni-W-P Coating on AZ91D Magnesium Alloy,” Applied Surface Science, Vol. 253, pp. 5116-5121, 2007.
[33]Wang, S., Xia, Y., Liu, L., and Si, N., “Preparation and Performance of MAO Coatings obtained on AZ91D Mg alloy under Unipolar and Bipolar modes in a Novel Dual Electrolyte,” Ceramics International, Vol. 40, pp. 93-99, 2014.
[34]Yerokhin, A. L., Leyland, A., and Matthews, A., “Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation,” Applied Surface Science, Vol.200, pp.172-184, 2002.
[35]Wirtz G. P., Brown S. D., and Kriven W. M., “Ceramic Coatings by Anodic Spark Deposition,” Material and Manufacturing Process, Vol. 6, pp.87-115,1991.
[36]Guohua, L., Gu, W., Chen, H., Feng, W., Khosa, M. L., Li, L., Niu, E., Zhang, G., and Yang, S. Z., “Characteristic of Ceramic Coatings on Aluminum by Plasma Electrolytic Oxidation in Silicate and Phosphate Electrolyte,” Applied Surface Science, Vol.253, pp.2947-2952, 2006.
[37]馮克林,微電弧電漿電化學技術,輕金屬專題,工業材料雜誌,211期,第104-109頁,2004。
[38]崔春翔、趙立臣,鎂合金生物材料製備及表面處理,科學出版社,第105-119頁,2013。
[39]蔣永鋒、李均明、蔣百靈等,鋁合金微弧氧化陶瓷層形成因素的分析,表面技術,第30卷第2期,第37-39頁,2001。
[40]Duan, H. P.,Yan, C. W., and Wang, F. H., “Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D,” Electrochimica Acta, Vol. 52, pp.3785-3793, 2007.
[41]Gnedenkov, S. V., Khrisanfova, O. A., Zavidnaya, A. G., Sinebryukhov, S. L., Egorkin, V. S., Nistratova, M. V., Yerokhin, A., and Matthews, A., “PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes,” Surafc & Coatings Techology, Vol. 204, pp. 2316-2322, 2010.
[42]Barchiche, C. E., Veys-Renaux, D., and Rocca, E., “A better understanding of PEO on Mg alloys by using a simple galvanostatic electrical regime in a KOH–KF–Na3PO4 electrolyte,” Surface & Coatings Technology, Vol. 205, pp. 4243-4248, 2011.
[43]Zhang, R. F., Zhang, S. F., Xiang, J. H., Zhang, L. H., Zhang, Y. Q., and Guo, S. B., “Influence of sodium silicate concentration on properties of micro arc oxidation coatings formed on AZ91HP magnesium alloys,” Surafc & Coatings Techology, Vol. 206, pp. 5072-5979, 2012.
[44]Li, Z. J., Yi, Y. A., and Jing, X. Y., “Effect of current density on the structure, composition and corrosion resistance of plasma electrolytic oxidation coatings on Mg–Li alloy,” Journal of Alloys and Compounds, Vol. 541, pp. 380-391, 2012.
[45]Song, X. H., Lu, J. H., Yin, X. J., Jiang, J. P., and Wang, J., “The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy,” Journal of Magnesium and Alloys, Vol. 1, pp. 318-322, 2013.
[46]Young, G. K., Eung, S. L., and Dong, H. S., “Influence of voltage waveform on anodic film of AZ91 Mg alloy via plasma electrolytic oxidation: Microstructural characteristics and electrochemical responses,” Journal of Alloys and Compounds, Vol. 586, pp. 357-361, 2014.
[47]陳巧婷,“高耐蝕鎂鋰合金(LZ91)微弧氧化膜及金屬化之特性研究”,碩士論文,國防大學中正理工學院化學工程碩士班,桃園,2014。
[48]陳並,現代實用電鍍技術,國防工業出版社,北京,第286頁,2004。
[49]姜曉霞,沈偉,化學鍍理論及實踐,國防工業出版社,北京,第181-182頁,2000。
[50]蔡松穎,“以非均勻溫化學濕式高性能鎳基合金鍍層製備之研究”,碩士論文,國防大學理工學院化學工程碩士班,桃園,2009。
[51]胡文彬、劉磊、仵亞庭,難鍍基材的化學鍍鎳技術,化學工業出版社,第10-13頁,2004。
[52]Lee, S. J., Huang, C. H., and Chen, Y. P., “Investigation of PVD Coating on Corrosion Resistance of Metallic Bipolar Plates in PEMFC,” Journal of Materials Processing Technology, Vol. 140, pp. 688-693, 2003.
[53]Ming-an Chen, Nan Cheng, Yan-chun Ou, Jun-ming Li., “Corrosion performance of electroless Ni–P on polymer coating of MAO coated AZ31 magnesium alloy,” Surface & Coatings Technology, Vol. 232, pp. 726-733, 2013.
[54]D. Seifzadeh, Z.Rajabalizadeh., “Environmentally-friendly method for electroless Ni–P plating on magnesium alloy,” Surface & Coatings Technology, Vol. 218, pp. 119-126, 2013.
[55]Can SUN, Xing-wu GUO, Shao-hua WANG, Jia-cheng GUO, Wen-jiang DING., “Homogenization pretreatment and electroless Ni−P plating on AZ91D magnesium alloy,” Trans. Nonferrous Met. Soc. China, Vol. 24, pp. 3825-3833, 2014.
[56]Zhengwei Song, Zhihui Xie, Gang Yu, Bonian Hub, Xiaomei He, Xueyuan Zhang., “A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy,” Journal of Alloys and Compounds, Vol. 623, pp. 274-281, 2015.
[57]鄭駿毅,“高強度鎂合金金屬鍍層之研究”,碩士論文,國防大學中正理工學院化學工程碩士班,桃園,2016。
[58]Sanna, A., Abo, E. E., Omar, E. A. S., Hammam, E. A., and Ashraf, M. A., “New Electroplated Aluminum Bipolar plate for PEM Fuel Cell,” Journal of Power Sources, Vol. 177, pp. 131-136, 2008.
[59]田福助、電化學-原理與應用,高立圖書,第121-141頁,臺北,1987。
[60]紹元華、朱果逸、董獻堆、張柏林,電化學方法原理和應用,化學工業出版社,第32-80頁,北京, 2005。
[61]Shun-Yi Jian , Jeou-Long Lee, Hung-Bin Lee, Hung-Hua Sheu, Chang-Ying Ou, Ming-Der Ger., “Influence of electroless plating on the deterioration of the corrosion resistance of MAO coated AZ31B magnesium alloy,” Journal of the Taiwan Institute of Chemical Engineers, Vol. 68, pp. 496-505, 2016.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top