|
[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/. [2] Google cloud platform. http://cloud.google.com/. [3] Xen. http://xen.org. [4] Kvm. http://www.linux-kvm.org/. [5] Amd radeon hd 6990 graphics. http://tinyurl.com/69qxshp. [6] Intel i7-980 xe. http://tinyurl.com/86mmt37. [7] J.A. Anderson, C.D. Lorenz, and A. Travesset. General purpose molecular dynamics simulations fully implemented on graphics processing units. In Journal of Computational Physics, 2008, pages 5342–5359, February 2008. [8] G. Chen, G. Li, S. Pei, and B. Wu. Gpgpu supported cooperative acceleration in molecular dynamics. In Computer Supported Cooperative Work in Design (CSCWD), 2009. 13th International Conference on, pages 113–118, April 2009. [9] Vincent A. Voelz, Gregory R. Bowman, Kyle Beauchamp, and Vijay S. Pande. Molecular simulation of ab initio protein folding for a millisecond folder ntl9(1-39). Journal of the American Chemical Society, 132(5):1526–1528, 2010. PMID: 20070076. [10] Gpgpu. http://gpgpu.org/. [11] Nvidia. http://www.nvidia.com/. [12] Ibm. http://www.ibm.com/. [13] Intel. http://www.intel.com/. [14] Amd. http://www.amd.com/. [15] Cuda. http://www.nvidia.com/content/cuda/cuda-toolkit.html. [16] Opencl. http://www.khronos.org/opencl/. [17] Amazon high performance computing on cloud. http://aws.amazon.com/hpc-applications/. [18] Hoopoe. http://www.hoopoe-cloud.com/. [19] zillians. http://www.zillians.com/. [20] Nvidia fermi architecture. http://tinyurl.com/6vdsl4q. [21] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P.Hanrahan. Brook for gpus: Stream computing on graphics hardware. In ACMTransactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2004, pages 777–786, August 2004. [22] S. Asano, T. Maruyama, and Y. Yamaguchi. Performance comparison of fpga, gpu and cpu in image processing. In Field Programmable Logic and Applications, 2009. FPL 2009. International Conference on, pages 126 –131, 31 2009-sept. 2 2009. [23] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu. Optimization principles and application performance evaluation of a multithreaded gpu using cuda. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, PPoPP ’08, pages 73–82, New York, NY, USA, 2008. ACM. [24] Amd app acceleration. http://www.amd.com/stream. [25] Using inline ptx assembly in cuda. http://tinyurl.com/866zchu. [26] Windows azure, microsoft’s cloud platform. http://www.windowsazure.com/. [27] L. Shi, H. Chen, and J. Sun. vcuda: Gpu-accelerated high-performance computing in virtual machines. In IEEE International Symposium on Parallel & Distributed Processing, pages 1–11, May 2009. [28] Xml-rpc. http://xmlrpc.com/. [29] Extensible markup language (xml). http://www.w3pdf.com/W3cSpec/XML/2/REC-xml11-20060816.pdf. [30] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A gpgpu transparent virtualization component for high performance computing clouds. In Euro-Par 2010 V Parallel Processing, pages 379–391, September 2010. [31] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E.S. Quintana-Orti. rcuda: Reducing the number of gpu-based accelerators in high performance clusters. In High Performance Computing and Simulation (HPCS), 2010 International Conference on, pages 224–231, August 2010. [32] J. Duato, A.J. Pena, F. Silla, R. Mayo, and E.S. Quintana-Orti. Performance of cuda virtualized remote gpus in high performance clusters. In Parallel Processing (ICPP), 2011 International Conference on, pages 365–374, June 2011. [33] Cuda toolkit 4.0. http://developer.nvidia.com/cuda-toolkit-40. [34] T. Li, V.K. Narayana, E. El-Araby, and T. El-Ghazawi. Gpu resource sharing and virtualization on high performance computing systems. In Parallel Processing (ICPP), 2011 International Conference on, pages 733–742, June 2011. [35] Kepler, next generation cuda compute architecture. http://www.nvidia.com.tw/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf. [36] Message passing interface. http://www.mcs.anl.gov/research/projects/mpi/.
|