跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 23:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉安湧
研究生(外文):A.-Y. Liu
論文名稱:含磷環氧樹脂之硬化動力探討及熱性質分析
論文名稱(外文):Curing and Pyrolysis of Cresol Novolac Epoxy Resins Containing ODOPN
指導教授:芮祥鵬芮祥鵬引用關係
指導教授(外文):S.-P. Rwei
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:有機高分子研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:62
中文關鍵詞:環氧樹脂硬化動力自我催化反應熱分解性質
外文關鍵詞:Epoxy ResinsCuring kineticsAutocatalytic kineticsPyrolysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1364
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究是探討環氧樹脂與含磷硬化劑的硬化反應動力學以及熱裂解與難燃等性質。分別將將含磷雙酚硬化劑,2-6(-oxido-6H-dibenz(c,e)(1,2)oxaphosphorin-6-
yl)-1,4-naphthalenediol (ODOPN) 以及酚醛型硬化劑Phenol Novolac(PN)與鄰-甲酚醛多環性環氧樹脂o-Cresol Novolac Epoxy (CNE)進行硬化聚合反應,以示差掃瞄熱卡計DSC進行動態掃瞄求得最大放熱峰值(Tp),再以小澤法(Ozawa method)計算硬化活化能。
將兩種硬化劑ODOPN與PN混摻,以0/100、25/75、50/50、75/25、100/0比例均勻混合再與環氧樹脂(CNE)進行固化,以動態黏彈機械分析儀DMA測其玻璃轉移溫度。利用熱重量損失分析儀TGA探討含磷環氧樹脂的熱裂解溫度及殘餘量與含磷量之間的關係,發現700℃時的殘餘量均隨著磷含量增加而增加,但熱裂解溫度有向低溫提前的趨勢。並利用小澤法(Ozawa method)計算熱裂解活化能,顯示含磷量越多的含磷環氧樹脂其裂解活化能越低。再利用限氧指數測試儀測試含磷環氧樹脂限氧指數LOI值,隨著磷含量增加,其限氧指數LOI值越高,難燃程度越好。
In this paper, discussions of the kinetics in curing reaction of epoxy resin with a curing agent containing phosphorus, and the thermal degradation behavior, flame-retardant property of the cured epoxy resins.
The curing reaction of a o-Cresol Novolac Epoxy (CNE) coupled with a curing agent containing phosphorus, 2-6(-oxido-6H-dibenz(c,e)(1,2)oxaphosphorin-6-yl)-1,4-naphthalenediol
(ODOPN) was conducted to obtain an epoxy resin containing phosphorus in main chain. The kinetic parameters, activation energy of the curing reaction were obtained by DSC analysis.
The glass transition temperature of the phosphorus content in cured phosphorus epoxy resins was measured by DMA. The thermal degradation behavior of cured phosphorus epoxy resins with different content of phosphorus was examined by TGA analysis. The residue in 700℃ by TGA was increased, and the degradation temperature will decrease by increasing phosphorus contents. The thermal degradation energy of cured phosphorus epoxy resins was estimated by Ozawa method, the energy was decreased by increasing phosphorus content in cured phosphorus epoxy resins. The flame-retardant property of cured phosphorus epoxy resin was measured by LOI. The LOI value was increased by increasing phosphorus content in cured phosphorus epoxy resins.
摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅲ
誌謝‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅴ
目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅵ
表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅷ
圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧Ⅸ
第一章 序論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.1前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.2環氧樹脂簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
第二章 文獻回顧與原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5
2.1環氧樹脂特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧5
2.2高分子難燃劑之重要性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9
2.3高分子難燃劑的開發‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧9
2.4高分子燃燒的因素‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧11
2.5高分子的燃燒機構‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12
2.6高分子難燃劑的選擇‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧14
2.7難燃劑阻燃原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧16
2.8燃燒特性之測試‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧20
2.9環氧樹脂硬化反應動力學‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧21
2.10環氧樹脂裂解動力學‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧24
第三章 實驗‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26
3.1材料與藥品‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧26
3.2儀器設備‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27
3.3實驗方法‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧28
第四章 結果與討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33
4.1DSC分析硬化劑之硬化反應活性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33
4.2硬化動力學求反應活化能‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33
4.2.1動態法Ⅰ(Kissinger’s method) ‧‧‧‧‧‧‧‧‧‧‧‧‧33
4.2.2動態法Ⅱ(Ozawa’s method) ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧34
4.3自我催化反應模式(autocatalytic kinetic model) ‧‧‧‧‧‧35
4.4DMA分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36
4.5難燃性分析TGA、LOI‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36
4.5.1含磷環氧樹脂裂解活化能分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37
4.5.2LOI值分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧37
第五章 結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧38
第六章 參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧40
1.William F. Smith , “Foundations of Materials Science and
Engineering” ,McGraw-Hill ,New York,1976.
2.Lee ,H. and Neville ,K. ,”Handbook of Epoxy Resin” ,McGraw-
Hill ,New York,1976.
3.Ellis ,B. ,”Chemistry and Technology of Epoxy Resin”,Chap1,
p1-35,1993.
4.恒內弘著 ,賴耿陽譯著 ,環氧樹脂應用實務 ,復漢出版社 ,1993年.
5.Prime ,R.B. ,Thermal Characterization of Polymeric Materials
,Chap5,p435-569 ,1981.
6.Aronhime , M. T. ; Gillham ,J. K. ,Adv. in Polymer Sci.
,78 ,p83 ,1986.
7.Gillham , J. K. Encylopendia of Polymer Science and
Engineering , 2nd edn. John Wiley , New York. , p519-524.
8.Halley P. J. ; Mackay , M. E. , Polym. Eng. Sci. , 36 , 5 ,
p593 , 1996.
9.Xu , J. ; Fu , H. ; Schulp , J. R. , J. Am. Chem. Soc. , vol.
116 , No. 7 , p2821-2826 , 1994.
10.Van Krevelen , D. W. , Polymer , 16 , p615 , 1975.
11.M. Lewin , S. M. Atlas and E. M. Pearce , “Flame Retardant
Polymeric Materials” , Plenum Press , New York. , 1978.
12.沈永清、張信貞、莊學平、張榮樹 , “高分子難燃機構及原理” ,
化工資訊 , 9(2) , pp15-31 , 1995.
13.陳光榮、黃素珍 , “難燃劑國內市場現況及走向” , 化工資訊 ,
7(12) , pp24-37 , 1993.
14.“Fire and Polymer” , ACS SYMPOSIUM SERIES 425 (Eds. Gordon
L. and Nelson) Dallas , Texas , 1989.
15.C. F. Cullis and Clare don Press , Oxford , England , 229
,1981.
16.A. D. F. Toy and E. N. Walsh , Phosphorus Chemistry in
Everyday Living , ACS , Washington , D. C. 137 ,1987.
17.J. W. Lyons , The Chemistry and Uses of Fire Retardants ,
Wiley-Interscience , New York . , 1970.
18.P. Robitschek and C. T. Bean , Ind, Eng. Chem. , 46(8) ,
1682 , 1954.
19.程亦妮、張信貞”不飽和聚酯之難燃化” , 化工資訊 , 第九卷
第2期 ,1995.
20.R. R. Hindersinn and J. F. Porter , U. S. Patent 3 , 598 ,
733 , 1971.
21.W. J. Connolly and A. M. Thornton , Mod. Plastics , 43(2) ,
154 , 1965.
22.蘇俊輝”塑膠的難燃性” 塑膠資訊 , 9 , 1996.
23.H. L. Vandersall , J. Fire Flammability , 2 , 97 , 1970.
24.R. Bush , Plastics Eng. , 29 , 1988.
25.張信貞、程亦妮、莊學平、沈永清”膨脹型難燃劑的理論與應用” ,
化工資訊 , 7(9) , 52 , 1995.
26.Y. L. Liu , G. H. Hsiu , Y. S. Chiu and R. J. Jeng. , J.
Appl. Polym. Sci. , 61 , 1789 , 1996.
27.M. Banks , J. R. Ebdon and M. Johnson. , Polymer. , 35 , 3470
, 1994.
28.K. S. Annakurtty and K. Kishore. , Polymer. , 29 , 756 ,
1988.
29.K. Kishore , K. S. Annakurtty and I. M. Mallick. , Polymer.
, 29 , 762 , 1998.
30.S. Banerjee , S. K. Palit and S. Maiti. , J. Polym. Sci. ,
Polym. , Chem. , 22 , 1259 , 1984.
31.J. A. Mikoryannidis and D. A. Kourtides. , J. Appl. Polym.
Sci. , 29 , 941 , 1984.
32.J. S. Anand and S. C. Shit , Popular Plastics & Packaging ,
45 , 1995.
33.C. P. Fenimore and F. J. Martin , Mod. Plastics , 44 , 141 ,
1966.
34.J. Luston , A. Manasek and M. Kulickora , J. Macromol. Sci.
Chem. , 12 , 995 , 1978.
35.E. Mertzel and J. L. Koening , Adv. Polym. Sci. , 75 , 73 ,
1986.
36.K. E. Barret , J. Appl. Polym. Sci. , 11 , 1617 , 1967.
37.F. Mohtezin , L. Cuesta , J. M. , Crespy A. and P. Georlette
, Fire and Materials , 21 , p245 , 1997.
38.J. G. Campa , J. Abajo , A. Mantecon and V. Cadiz , Eur.
Polym. J. , 23 , 961 , 1987.
39.M. A. Keenan , J. Appl. Polym. Sci. , 33 , 1725 , 1987.
40.R. B. Prime , Polym. Eng. Sci. , 13 , 365 , 1973.
41.R. A. Fava , Polymer , 19 , 137 , 1968.
42.T. Ozawa , “Kinetics of Non-isothermal Crystallization” ,
Polymer. Vol. 12 , pp. 150-158 , 1971.
43.T. Ozawa , “A New Method of Analyzing Thermogravimetric
Data” , Bull. Chem. Sic. Jan. , 38 , pp. 1881-1886 , 1965.
44.H. E. Kissinger , ”Variation of Peak Temperature With
Heating Rate in Differential Thermal Analysis“ , J. Res.
Natl. Bur. Stand , Vol. 57 , No. 4 , pp.217-221 , 1956.
45.Liou , G. S. ; Hsiao , S. H. High Perform Polym , 137 , 2001.
46.Nair , C. P. N. ; Glouet, G. : Guilbert, Y. Polym Degard
Stabil , 26 , 305 , 1989.
47.S. Y. Pusatciolu , A. L. Fricke and J. C. Hassler. , Hates
of Reaction and Kinetics of a Thermoset Polyester , J. Appl.
Polym. Sci. , 24 , 937 , 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top