跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.118) 您好!臺灣時間:2025/12/01 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張薰文
研究生(外文):Hsun-Wen Chang
論文名稱:連續k系統之最優配置
論文名稱(外文):Optimal Assignments of Consecutive-k Systems
指導教授:黃光明黃光明引用關係陳榮傑陳榮傑引用關係
指導教授(外文):F. K. HwangRong-Jaye Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:英文
論文頁數:65
中文關鍵詞:連續k系統最優配置
外文關鍵詞:consecutive-k systemsoptimal assignmentBirnbaum importance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
連續k系統乃由n個元件排成一線所組成。在F系統中,若n個元件中有連續k個元件不能運作,則整個系統亦不能運作;而在G系統中,則是若n個元件中有連續k個元件能運作,則整個系統即能運作。連續k系統有許多的實際應用,諸如:電信通訊系統、太空轉接站、監控系統等等,相當值得廣泛地研究。
最佳配置問題於1982由Derman, Lieberman and Ross所提出,其研究如何安排n個元件使得系統具有最佳可靠度。已知G系統僅當k£n£2k時才具有最佳不變性配置,在第二章我們探討當ki£ni£2ki時,串聯G系統的最佳不變性配置是否存在。
由於許多連續k系統並無最佳不變性配置,於是我們研究重要性指標,以提供某些位置較重要的資訊,使得我們能將較可靠的元件優先配置其上,以得最佳系統可靠度。在第三章我們研究F系統上,組合型(p=1/2)以及一致型(0<p<1)的重要性指標,並提出新的半線型(p31/2)重要性指標,除了展現新結果及訂定某些猜測外、並利用程式結果對前人所立定的某些猜測提出反例。
在第四章我們研究偶發事件型(pR0)重要性指標,在第五章我們更進一步研究通路型重要性指標,以提供更多的配置決策資訊。
A consecutive-k system consists of n components arranged in a line. A consecutive-k-out-of-n:F (con(k/n:F)) system fails if and only if some consecutive k components are all failed. A consecutive-k-out-of-n:G (con(k/n:G)) system works if and only if some consecutive k components are all working. Consecutive-k systems are used in several applications, such as telecommunication, space relay stations, monitoring systems, and so on. That is why they have attracted many researchers.
In 1982, Derman, Lieberman and Ross proposed the optimal assignment problem which is to assign the n functionally exchangeable components to the n positions in a line to maximize the system reliability. The dissertation first addresses the existence of invariant series systems. It is known that a consecutive-k-out-of-n:G system has an invariant optimal assignment if and only if k£n£2k. In Chapter 2, we discuss the consecutive-ki-out-of-ni:G series system with ki £ ni £ 2ki and completely characterize the existence of invariant optimal assignments.
Many consecutive-k systems, however, do not have invariant optimal assignments. At the present, we consider heuristic algorithms for optimal assignments. In Chapter 3, we summarize our knowledge of the combinatorial case (p=1/2) and the uniform case (0<p<1), propose the new half-line case (p31/2), present some new results and conjectures, and use our extensive computer-generated data to give counterexamples to some plausible conjectures for con(k/n:F) systems.
After we have studied the structural Birnbaum importance on the cases p=1/2 and p31/2, we look into the rare-event case (pR0) in Chapter 4 to complete the spectrum of examining uniform Birnbaum importance over the whole range of p. Moreover, we propose the path importance to strengthen the rare-event case in Chapter 5.
封面
CHINESE ABSTRACT
ENGLISH ABSTRACT
ACKNOWLEDGEMENT
CONTENTS
CHAPTER 1. INTRODUCTION
1.1 ASSIGNMENT PROBLEMS OF CONSECUTIVE-κ SYSTEMS
1.2 PRELIMINARIES
CHAPTER 2. EXISTENCE OF INVARIANT SERIES SYSTEMS
2.1 PREVIOUS WORKS ON con(k/n:F) SYSTEMS
2.2 PREVIOUS WORKS ON con(k/n:G) SYSTEMS
2.3 MAIN RESULTS ON con(k/n:G) SERIES SYSTEMS
CHAPTER 3. STRUCTURAL BIRNBAUM IMPORTANCE OF con(k/n:F) SYSTEMS
3.1 THE LITERATURE
3.2 MAIN RESULTS
3.3 THE κ=3 CASE
3.4 NONEXISTENCE OF PLAUSIBLE RESULTS AND CONJECTURES
CHAPTER 4. RARE-EVENT IMPORTANCE OF con(k/n:F) SYSTEMS
4.1 RARE-EVENT IMPORTANCE
4.2 COMPARISONSOF RARE-EVENT IMPORTANCE
CHAPTER 5. PATH IMPORTANCE OF con(k/n:F) SYSTEMS
5.1 PRELIMINARIES
5.2 PATH IMPORTANCE OF con(3/n:F) SYSTEMS
5.3 PATH IMPORTANCE OF con(4/n:F) SYSTEMS
5.4 PATH IMPORTANCE OF con(5/n:F) SYSTEMS
CHAPTER 6. CONCLUSION
REFERENCES
[1]Z. W. Birnbaum, "On the Importance of Different Components in A Multicomponent System," in Multivariate Analysis II, Ed. P. R. Krishnaiah, Academic, NY, 1969, pp. 581-592.
[2]G. J. Chang, L. Cui and F. K. Hwang, "New Comparisons in Birnbaum Importance for the Consecutive-k-out-of-n System", Prob. Eng. Inform. Sci., Vol. 13, pp. 187-192, 1999; Errata, to appear.
[3]G. J. Chang, L. Cui and F. Hwang, Reliability of Consecutive-k Systems, Kluwer Academic Publishers.
[4]G. J. Chang, F. K. Hwang, and L. Cui, "Corrigenda on "New Comparisons in Birnbaum Importance for the Consecutive-k-out-of-n System"," Corrigenda, Vol. 14, pp. 405, 2000.
[5]Hsun-Wen Chang, R. J. Chen and F. K. Hwang, "The Structural Birnbaum Importance of Consecutive-k Systems," Journal of Combinatorial Optimization, to appear.
[6]Hsun-Wen Chang and F. K. Hwang, "Existence of Invariant Series Consecutive-k-out-of-n:G Systems," IEEE Trans. Reliability, Vol. 48, No. 3, pp. 306-308, Sep. 1999.
[7]D. Chiang, S. C. Niu, "Reilability of Consecutive k-out-of-n," IEEE Trans. Reliability, Vol. R-30, pp. 87-89, Apr. 1981.
[8]C. Derman, G. J. Lieberman and S. M. Ross, "On the Consecutive-k-out-of-n:F System," IEEE Trans. Reliability, Vol. R-31, pp. 57-63, Apr. 1982.
[9]D. Z. Du and F. K. Hwang, "Optimal Consecutive-2 Systems of Lines and Cycles," Networks, Vol. 15, pp. 439-447, 1985.
[10]D. Z. Du and F. K. Hwang, "Optimal Consecutive-2-out-of-n Systems," Mathematics of Operations Research, Vol. 11, No. 1, pp. 187-191, Feb. 1986.
[11]W. Griffith, Z. Govindarajulu, "Consecutive-k-out-of-n:F Systems: Reliability, Availability, Component Importance, and Multistate Extensions," Amer. J. Mathematical and Management Sciences, Vol. 5, pp. 125-160, 1985
[12]F. K. Hwang, "Fast Solutions for Consecutive-k-out-of-n:F System," IEEE Trans. Reliability, Vol. R-31, pp. 447-448, Dec. 1982.
[13]F. K. Hwang, A New Index of Component Importance, Operations Research Letters, to appear.
[14]F. K. Hwang, A Hierarchy of Importance Indices (submitted) 1999.
[15]F. K. Hwang and D. H. Shih, "Redundant Consecutive-k Systems," Operations Research Letters, Vol. 6, No. 6, pp. 293-296, Dec. 1987.
[16]A. Jalali, A. G. Hawkes, L. Cui, and F. K. Hwang, "The Optimal Consecutive-k-out-of-n:G Line for n £ 2k," submitted to Naval Research Quarterly.
[17]J. M. Kontoleon, "Reliability Determination of a r-successive-out-of-n System," IEEE Trans. Reliability, Vol. R-29, pp. 437, Dec. 1980.
[18]W. Kuo, W. Zhang, and M. Zuo, "A Consecutive-k-out-of-n:G System: The Mirror Image of a Consecutive-k-out-of-n:F System," IEEE Trans. Reliability, Vol. 39, pp. 244-253, June 1990.
[19]F. H. Lin, W. Kuo and F. K. Hwang, "Structural Importance of Consecutive-k-out-of-n Systems," Operations Research Letters, Vol. 25, pp. 101-107, 1999.
[20]D. M. Malon, "Optimal Consecutive-2-out-of-n:F Component Sequencing," IEEE Trans. Reliability, Vol. R-33, pp. 414-418, Dec. 1984.
[21]D. M. Malon, "Optimal Consecutive-k-out-of-n:F Component Sequencing," IEEE Trans. Reliability, Vol. R34, pp. 46-49, Apr. 1985.
[22]S. G. Papastavridis, "The Most Important Component in a Consecutive-k-out-of-n:F System," IEEE Trans. Reliability, Vol. R-36, pp. 266-268, June 1987.
[23]M. Santha and Y. Zhang, Consecutive-2 systems of trees, Prob. Eng. Inform. Sci., Vol. 1, pp. 441-456, 1987.
[24]J. Shen and M. J. Zuo, "Optimal Design of Series Consecutive-k-out-of-n:G Systems," Reliability Engineering and System Safety, Vol. 45, pp. 277-283, 1994.
[25]Y. L. Tong, "A Rearrangement Inequality for the Longest Run, with an Application to Network Reliability," J. Applied Probability, Vol. 22, pp. 386-393, 1985.
[26]R. S. Zakaria, H. A. David and W. Kuo, "The Nonmonotonicity of Component Importance Measures in Linear Consecutive-k-out-of-n Systems," IEE Trans., Vol. 24, pp. 147-154, 1992.
[27]M. Zuo, "Reliability and Component Importance of a Consecutive-k-out-of-n System," Microelecron Reliab., Vol. 33, No. 2, pp. 243-258, 1993.
[28]M. Zuo and W. Kuo, "Design and Performance Analysis of Consecutive-k-out-of-n Structure," Naval Research Logistics, Vol. 37, pp. 203-230, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top