跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王聖皓
研究生(外文):Sheng-Hao Wang
論文名稱:製備LAS多孔隙濾材:玻璃陶瓷法與無機聚合法
論文名稱(外文):Syntheses of Lithium Aluminosilicate for Porous Filters : Glass-Ceramic method and Geopolymerization
指導教授:李國通李國通引用關係
指導教授(外文):Kuo-Tong Lee
口試委員:翁文彬簡文鎮
口試委員(外文):Wen-Pin WengWen-Chen Chien
口試日期:2014-07-02
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:無機聚合法玻璃陶瓷法陶瓷濾材氣體滲選鋰鋁矽酸鹽
外文關鍵詞:GeopolymerizationGlass-Ceramic methodCeramic filtersGas infiltrationlithium aluminosilica
相關次數:
  • 被引用被引用:0
  • 點閱點閱:642
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本研究以兩種方法製備多孔隙濾材。(1)無機聚合法:自製的LAS玻璃以鹼性溶液活化顆粒表面,進行聚合反應形成無機聚合(Geopolymer)濾材;(2)玻璃陶瓷法:LAS玻璃體經成核24h、陶瓷晶粒成長後,以HF蝕去殘餘玻璃形成連通性孔隙之濾材。本研究模擬二氧化碳(CO2)與甲烷(CH4)兩種主要溫室氣體的甲烷乾基重組反應,以無機聚合濾材及玻璃陶瓷濾材,進行生成氫氣(H2)的氣體滲選分離試驗。
無機聚合濾材是以LAS玻璃粉末、氫氧化鉀(KOH)及矽酸鈉(Na2Si4O9)為起始物料,經過聚合反應及養護1~2天後形成。本研究主要探討養護壓力效應。實驗結果顯示養護計示壓力為-250torr時,試樣可完全固化脫模,其表面結構平整,較適合應用在氣體滲透。SEM顯微結構顯示LAS無機聚合體的孔隙大小約90~100nm,H2的氣體滲透濃度為最高的2.1% ,H2氣體分離係數為2498.2。
玻璃陶瓷濾材是以LAS玻璃體為起始物料,經陶瓷化及瀝除殘餘玻璃相後形成。本研究主要探討晶粒成長的溫度及時間效應。實驗結果顯示晶粒成長溫度在1400℃,持溫4h等,獲得的LAS陶瓷濾材孔隙大小約100nm,且具有較多的連通性孔隙,使得H2滲透濃度可達最高的3.6%,H2氣體分離係數則為712.74。玻璃瀝除效應以15%HF溶液,浸蝕180s最佳。
CO2連通性測試及H2氣體滲選分離實驗結果顯示玻璃陶瓷濾材的氣體通過率比無機聚合濾材高。SEM顯微結構圖顯示玻璃陶瓷濾材具較多連通孔隙,而無機聚合濾材的孔隙較少。熱膨脹實驗顯示無機聚合濾材在20℃~400℃為負熱膨脹性,400℃~650℃轉為低的正熱膨脹性;玻璃陶瓷濾材在20℃~650℃均為負熱膨脹性,兩者都適用於甲烷乾基重組的高溫反應。



The porous filters were prepared by two methods. (1) Geopolymerization: Self-made LAS glass can be synthesized in alkaline solutions of activation the particle surface. Geoploymer filters produced by a polymerization reaction; (2) Glass-Ceramic method: LAS glass through nucleation at 24h and ceramic grain growth. The form interconnected pores filters can be produced in HF of Residual glass etched. This study used the two major greenhouse gases of CO2 and CH4 to simulate the production of Geoploymer filters and Glass-Ceramic filters with H2 produced through methane-based reforming procedures.
Geoploymer filters are LAS glass particles, KOH, and Na2Si4O9 as a starting material produced through polymerization reaction and curing 1 to 2 days. This study examined the major effects of curing pressure. The experimental results indicated that the gauge pressure of curing was -250torr. The sample can be released full cure. It’s smooth surface structure. The Applications of more suitable in gas permeability. The microstructure of SEM results showed that pore size of LAS geoploymers have about 90~100nm. The hydrogen was the highest osmotic concentration of 2.1%. The hydrogen infiltration coefficients were 2498.2.
Glass-Ceramic filter materials are LAS glass as a starting material produced through ceramic and residual glass phase of falling down by drops. This study examined the major effects of temperature and time of grain growth. The experimental results indicate that grain growth of temperature was 1400℃, holding temperature at 4h. Pore size of LAS ceramic filter materials have about 100nm and pre-connection. The hydrogen was the highest osmotic concentration of 3.6%. The hydrogen infiltration coefficients were 712.74. The effects of residual glass of falling down etched 180s by 15% HF solution.
The experimental results of CO2 pre-connection test and Separation of H2 gas infiltration test indicated that Glass-Ceramic filters was better than Geoploymer filters in the rate of gas through. The microstructure of SEM showed that Glass-Ceramic filters have more pore of pre-connection, whereas Geoploymer filters have pore less. The experimental results of the thermal expansion showed that Geoploymer filters have negative thermal expansion at 20℃~400℃, but it converted to low positive thermal expansion at 400℃~650℃. Glass ceramic filters were negative thermal expansion at 20℃ ~ 650℃. Both were suitable for high-temperature reaction of methane-based reforming procedures.



明志科技大學碩士學位論文指導教授推薦書………………………..i
明志科技大學碩士學位論文口試委員審定書………………………..ii
明志科技大學學位論文授權書……………………………………….iii
誌謝…………………………………………………………………….iv
摘要…...………………………………………………………………..v
Abstract………………………………………………………………..vii
目錄…...……………………………………………………………….ix
表目錄…………………………………………………………….......xiii
圖目錄………………………………………………...……………….xiv

第一章 緒論…………………………………………………………….1
1-1研究動機………………………………………...………...1
1-2研究目的……………………………………………...…...2

第二章 理論基礎與文獻回顧…………………………………………..3
2-1 鋰鋁矽酸鹽…………………………...……………….......3
2-1-1 鋰鋁矽酸鹽的三相圖……………………………….....3
2-1-2 eucryptite LAS結構及負熱膨脹原理………….........4
2-2 玻璃陶瓷法………………………………………………..5
2-2-1 玻璃陶瓷……………………………………………….5
2-2-2 玻璃形成……………………………………………….6
2-2-3 LAS玻璃的冷卻速率效應…………………………..7
2-2-4 晶體成長.........................................................…....…...7
2-2-5 成核劑…....……………………………….……....……8
2-3 無機聚合法............………………………………………....8

2-3-1 發展史….…………………..………………………….8
2-3-2 無機聚合反應…………………………………………9
(1) 矽酸鈉溶液…….…………………..…………………...9
(2) 無機聚合物生成機制………………………...………..10
(3) 無機聚合物之結構………...……………..……….…...11
2-3-3 孔隙的生成…………….……………………………..13

第三章、實驗方法………………..…………………………………...23
3-1 藥品………………………………………………………23
3-2 實驗儀器及設備…………………………………………24
3-3 實驗步驟…………………………………………………26
3-3-1 LAS玻璃之製備……………………………………26
3-3-2 玻璃陶瓷濾材製備………………………….……….27
3-3-3 氫氧化鉀及矽酸鈉水溶液之配製……….………….27
3-3-4 無機聚合物之製備……………………………….….28
3-3-5 玻璃陶瓷SEM試片準備……………………….…...28
3-3-6 無機聚合物之耐衝擊試驗…………....……………..28
3-3-7 CO2孔隙連通性測試……………………………….29
3-3-8 混合氣體之滲選分離測試……....………...…….…..29
3-3-9密度與孔隙率等物性測試……....………...…….…...29

第四章、實驗結果與討論…………………………………………….39
4-1 LAS玻璃的製備……………………………………….39
4-1-1 LAS晶相的原料配比效應……………….....………39
4-1-2 製備非晶形LAS之液化溫度效應.……..…………....45
4-2 無機聚合法製備LAS多孔濾材……………………..…51
4-2-1 LAS玻璃粉末之形貌………………………..……..51
4-2-2 養護時間效應……………..…...................................52
4-2-3 高嶺土之摻混效應…..…………...….......................56
4-2-4 養護壓力(負壓)效應………………………….........61
4-3 玻璃陶瓷法製備LAS多孔濾材..……………................75
4-3-1 製程之晶粒微結構發展..…………….......................75
4-3-2 孔隙連通性之熱處理時間效應(1400℃)..…...........77
4-3-3 HF瀝取效應…………….…….................................81
4-4 無機聚合法與玻璃陶瓷法比較…………….……..........82

第五章、結論........................................................................................87
參考文獻................................................................................................89

1.F. Fisher, H. Tropsch, “Conversion of methane into hydrogen and carbon monoxide”, Brennstoff-Chemie. 1928, 9, 39-46.
2.A. I. Lichtenstein, R. O. Jones, “Anisotropic thermal expansion in the silicate β-eucryptite: A neutron diffraction and density functional study”, J. Chem. Educ, 1998, 58, 6219-6223.
3.R. A . Hatch, “Phase equilibrium in the system:Li2O-Al2O3-SiO2”, Chem. Eng. News Archive, 1943, 28, 471-496.
4.H. G. F. Winkler, “Synthesis and Crystal Structure of Eucrptite, LiAlSiO4”, Chem. Rev. 1949, 156.
5.R. Roy, D. M. Roy, E. F. Osborn, “Compositional and Stability Relationships Among the Lithium Aluminosilicates:Eucrypite, Spodumene and Petalite”, J. Am. Chem. Soc, 1978, 33, 152.
6.Z. Strnad, “Glass-Ceramic Materials Liquid Phase Separation, Nucleation and Crystallization in Glasses”, EAmst, 1986, 97-110.
7.P. A. Jezek, D. E Appleman, “Virgilite: a new lithium aluminum silicate mineral from the Macusani glass Peru”, J. Am. Chem, 1978, 63, 461-465.
8.F. A. Hummel, “Thermal Expansion Properties of Some Synthetic Lithia Minerals”, J. Am. Chem, 1951, 34, 235-239.
9.P. E. Doherty, D.W.Lee, R.S.Davis, “Direct Observation of the Crystallization of Li2O-Al2O3-SiO2 Glasses Containing TiO2”, J. Am. Chem, 1967, 77-81.
10.E. A. Bush, F. A. Hummel, “High-Temperature Mechanical Properties of Ceramic Materials:II Beta-Eucryptite”, J. Am. Chem, 1959, 42, 388-391.
11.H. Schulz, “Thermal Expansion of Beta Eucryptite”, J. Am. Chem, 1974, 57, 313-318.
12.H. Xu, P. J. Heaney, H. Bohm, “Structural Modulations and Phase Transition In β-Eucrptite an in-situ TEM Study”, MATER CH PH, 1999, 26, 633-634.
13.彭彥霖,”無機聚合法製備LAS多孔性濾材及應用”私立明志科技大學碩士論文(2012)。
14.Zachariasen Warren, B. E., “Kristallogy. Mineralog. Petrogr, ” 1933, 86, 349.
15.Dong Wei,Wei1, Lu Jin-Shan1, Feng Zhi-Jun1, LI Yao-Hui2, “ Effect of Glass Cooling Rate on the Crystallization Behavior and Structure of Lithium Aluminosilicate Glass-ceramics”, J INORG MATER , 2012, 27, 4.
16.Zhuohao Xiao, “Microstructure and Properties of Li2O-Al2O3-SiO2-P2O5 Glass-Ceramics”, Open Access, 2011, 5, 45-50.
17.Purdon,“The action of alkalis on blast furnace slag”, J Soc ChemInd, 1942, 59, 191–202.
18.J. Davidovits, Geopolymer chemistry and applications a practical and scientific approach to sustainable development, 2nd ed.; Institut Géopolymère: France, 1978; pp3-18.
19.H. Xu . J. S. J. Van Deventer, “The geopolymerisation of alumino -silicate minerals”, INT J MINER PROCESS, 2000, 59, 247-266.
20.D. M. Roy, “Alkali-activated cements: opportunities and challenges”, CEM CONCR R, 1999,29, No.2, 249-254.
21.H. Xu, J. S. J. Van Deventer, G. C. Lukey, “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures”, Ind. Eng. Chem. Res, 2001, 40, 3749-3756.
22.戴詩潔,” 高嶺石鋁矽酸鹽聚合材料之研究”,國立台北科技大學碩士論文(2005)。
23.J. Davidovits, “30 Years of successes and failures in geopolymer applications. market trends and potential breakthroughs”, 3rd ed.; International Conference, Melbourne: Australia, 2002.
24.V. F. F Barbosa, K. J. D. MacKenzie, C. Thaumaturgo, “Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers”, INT J MINER PROCESS , 2000, 2, 309-317.
25.J. W. Phair, J. S. J. Van Deventer, “Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers”, INT J MINER PROCESS , 2002, 66, 121-143.
26.J. Davidovits, “Geopolymers: Inorganic polymeric new materials” , J THERM ANAL, 1991,37, 1633-1656.
27.J. Davidovits, “Geopolymer chemistry and sustainable development. The poly(sialate) terminology : a very useful and simple model for the promotion and understanding of green-chemistry” , Geopolymer, Green Chemistry and Sustainable Development Solutions , ed: J.Davidovits , Saint-Quentin, France: Géopolymère Institute, 2005, pp9-15.
28.M. Schmucker, K. J. D. Mackenzie, “Microstructure of sodium polysialate siloxo geopolymer”, Ceram. Int, 2004, 31, 433-437.
29.林建宏,”氟離子去除技術應用於mMCOC/LAS混成材料之研究”私立明志科技大學碩士論文(2005)。
30.李元凱,”偏高嶺土聚合膠體工程性質之研究”,國立台灣科技大學碩士論文(2008)。
31.蔡龍震,”以無機聚合法製備陶瓷濾材並應用於溫室氣體轉化反應”私立明志科技大學碩士論文(2009)。
32.盧俊元,“添加GeO2對Li2O-Al2O3-SiO2玻璃陶瓷的結晶、熱膨脹性及透光率的影響”私立大同大學碩士論文(2005)。
33.W.Höland and G.Bell , “Optical Components,” OCIS, 2002, 263-272.
34.Werner kiefer,”Surface Strengthening of Low-Expansion Glass Ceramics,” in Low Thermal Expansion Glass Ceramics,Schott Series on Glass and Glass Ceramics. Edited by H.Bach;Springer-Verlag: Berlin,1995 ,pp 95-103.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊