跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 22:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁豪廷
研究生(外文):Hau-Ting Weng
論文名稱:硫化銅-氧硫化鋅/石墨氮化碳與氧硫化鋅/石墨烯複合材料之製備及其光催化產氫之應用
論文名稱(外文):CuS-ZnS1-xOx/g-C3N4 and ZnS1-xOx/graphene photocatalysts for efficient photocatalytic hydrogen production
指導教授:張棋榕
指導教授(外文):Chi-Jung Chang
口試委員:徐雍鎣張忠傑謝建德
口試日期:2016-07-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:93
中文關鍵詞:光觸媒產氫氧硫化鋅硫化銅修飾石墨氮化碳石墨烯
外文關鍵詞:PhotocatalystHydrogen productionZincoxysulfideCuS decorationGraphitic carbon nitrideGraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用水熱法製備硫化銅-氧硫化鋅/石墨氮化碳(g-C3N4)之有機-無機奈米複合異質結構光觸媒,並展現出良好的應光催化產氫效率。透過調整氧硫化鋅製程條件、硝酸銅前驅液濃度及石墨氮化碳添加量,製備一系列光觸媒,並利用FESEM、XRD、FETEM、XPS、DRS、螢光光譜儀、電化學阻抗頻譜及SECM等儀器探討其表面型態、晶型結構、表面化學、光學性質及材料之光電流效應結果。最佳條件ZG25N5之光觸媒在紫外光照射下產氫效率為12200 μmol g-1h-1。硫化銅-氧硫化鋅/石墨氮化碳有良好的光觸媒特性,包含硫化銅的修飾幫助能隙的降低及增強吸光特性,可激發出更多的電子電洞對,再藉由石墨氮化碳導電特性及比表面積的提升,光電子經石墨氮化碳的導引,有效增加電子電洞分離率,進而提升光催化產氫效率。
本實驗第二部分,新穎的光催化產氫研究以氧硫化鋅及氧硫化鋅/石墨烯光觸媒,搭配甘油進行實驗。利用FESEM, XRD, FETEM, XPS, DRS、電化學阻抗頻譜、螢光光譜及SECM等儀器進行材料分析及討論。最佳條件ZG5之光觸媒在40% 甘油水溶液中經紫外光照射下產氫效率為1070 μmol g-1h-1。石墨烯的混摻有助於光電子藉由氧硫化鋅/石墨烯接觸之交界面進行導引,有效增加電子電洞分離率,增強了光催化劑的光催化活性。ZG5光觸媒展現卓越的光觸媒活性,是因為其有效提升比表面積、電子電洞對分離及光吸收強度。
In this study, CuS-ZnS1-xOx/g-C3N4 organic-inorganic heterostructured nanocomposite which was prepared by means of a hydrothermal method, exhibited good activities for photocatalytic hydrogen production. Effects of the ZnS1-xOx process condition, Cu(NO3)2 precursor concentration and g-C3N4 content on the morphology, crystalline properties, optical property, surface chemistry and photocurrent were investigated by using field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), field-emission transmission electron microscopy (FETEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectra (DRS), Photoluminescence (PL), electrochemistry impedance spectroscopy (EIS), photocurrent response, and hydrogen production tests. The optimized photocatalytic H2 production rates of ZC25N5I photocatalyst under UV light irradiation reach 12200 μmol g-1h-1. CuS-ZnS1-xOx/g-C3N4 photocatalysts have excellent properties, including decreased bandgap and enhanced light absorption due to CuS helping and increased specific surface area and efficient charge separation resulting from incorporation of g-C3N4.
In second part, the photocatalytic reforming of glycerol to hydrogen at room temperature by zincoxysulfide, zincoxysulfide/graphene catalysts was investigated. The photocatalysts were characterized by FESEM, XRD, FETEM, XPS, DRS, EIS, PL, photoelectrochemical test, and photocatalytic H2 production tests. The photocatalytic H2 production rates of ZG5 photocatalyst in 40% glycerol solution under UV light irradiation reach 1070 μmol g-1h-1.Incorporation of graphene helps the separation of photogenerated charge through the zincoxysulfide/graphene interfaces and enhance the photocatalytic activity of the photocatalysts. The ZG5 photocatalysts improved superior activity because of increased specific surface area, efficient charge separation, and enhanced light absorption.
摘要 i
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 基本理論及文獻回顧 4
2.1 光觸媒產氫原理 4
2.1.1 Z-Scheme之分解水產氫方式 5
2.2光觸媒降解原理 7
2.3半導體 8
2.4 光觸媒 14
2.4.1 氧化鋅(ZnO) 14
2.4.2 硫化鋅(ZnS) 17
2.4.3 硫化銅(CuS)基本性質 21
2.5 石墨氮化碳 21
2.6 光觸媒改質 25
第三章 實驗藥品與步驟 27
3-1實驗藥品及配件 27
3-2實驗儀器 28
3-3實驗流程圖 30
3-4實驗步驟 31
3.4.1 氧化鋅光觸媒製備 31
3.4.2硫化銅修飾氧硫化鋅光觸媒製備 31
3.4.3 石墨氮化碳製備 31
3.4.4 硫化銅修飾氧硫化鋅/石墨氮化碳複合觸媒 32
3.4.5 產氫實驗 32
3.5 實驗樣品命名 32
3.6 實驗分析及鑑定 34
3.6.1 冷場發射掃描式電子顯微鏡及輛散佈光譜儀(FESEM) 34
3.6.2 場發射穿透式電子顯微鏡(FETEM) 35
3.6.3 多功能薄膜X 光繞射儀(HRXRD) 37
3.6.4 化學分析電子能譜儀(XPS) 38
3.6.5 反射式紫外光/可見光光譜儀(UV/Vis Spectrometer) 39
第四章 結果與討論 41
4.1硫化銅-氧硫化鋅/石墨氮化碳 41
4.1.1 光觸媒-表面結構、元素及分佈(冷場發射掃描式電子顯微鏡 FESEM、EDX、mapping) 41
4.1.2 X射線繞射光譜 (XRD) 45
4.1.3穿透式電子顯微鏡 (TEM分析) 46
4.1.4 表面化學性質 (化學分析電子能譜儀 XPS分析) 47
4.1.5擴散反射式紫外線-可見光譜 (DRS) 49
4.1.6 光觸媒之產氫效率 50
4.1.7 光電流 (Photocurrent) 55
4.1.8 螢光光譜分析 (PL) 57
4.1.9 電化學阻抗頻譜 (EIS) 58
4.2氧硫化鋅/石墨烯 59
4.2.1 光觸媒-表面結構、元素及分佈(冷場發射掃描式電子顯微鏡 FESEM、EDX、mapping) 59
4.2.2 X射線繞射光譜 (XRD) 61
4.2.3穿透式電子顯微鏡 (TEM分析) 62
4.2.4擴散反射式紫外線-可見光譜 (DRS) 63
4.2.5 光觸媒之產氫效率 64
4.2.6 光電流 (Photocurrent) 69
4.2.7 螢光光譜分析 (PL) 70
4.2.8 電化學阻抗頻譜 (EIS) 71
第五章 結論 73
第六章 參考資料 75
[1] 貝多麗生物科技. 認識奈米光觸媒.
[2] Tristantini D, Ibadurrohman M. Photocatalytic hydrogen production from glycerol–water mixture over Pt‐N‐TiO2 nanotube photocatalyst. International Journal of Energy Research,37:1372-81,2013.
[3] 廖秋榮. 可視光光觸媒在環境保護之應用技術. 台灣土壤及地下水環境保護協會簡訊,Vol.27:13-21,2008.
[4] 黃思博. 氧化鋅奈米柱與二氧化鈦之混合結構在染料感光型太陽能電池光陽極之應用: 國立清華大學; 2010.
[5] Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting under visible light. The Journal of Physical Chemistry C,111:7851-61,2007.
[6] 姚裕評. 三機一體太陽能光電玻璃環保節能綠建材.
[7] Kittel C. Introduction to solid state: John Wiley & Sons; 1966.
[8] 簡佑達. 半導體. 全人教育百寶箱,2009.
[9] 賈德昌、周玉、李佩雯. 電子材料. 台北,滄海書局:pp. 133-42, 2002.
[10] 孫允武. 半導體概論. 中興大學物理系.
[11] 吳孟奇、洪勝富、連振炘、龔正. 半導體元件. 台北東華書局:pp. 67-125, 2003.
[12] Goetzberger A, Knobloch J, Voss B. Crystalline silicon solar cells. editorial John Wiley & Sons Ltd,1,1998.
[13] 瑞薩電子. 介於導體與絕緣體之間的半導體.
[14] Chen Y, Bagnall D, Yao T. ZnO as a novel photonic material for the UV region. Materials Science and Engineering: B,75:190-8,2000.
[15] Narendranath SB, Thekkeparambil SV, George L, Thundiyil S, Devi RN. Photocatalytic H2 evolution from water–methanol mixtures on InGaO3(ZnO)m with an anisotropic layered structure modified with CuO and NiO cocatalysts. Journal of Molecular Catalysis A: Chemical,415:82-8,2016.
[16] Zhang N, Shan C-X, Tan H-Q, Zhao Q, Wang S-P, Sun Z-C, et al. Black-colored ZnO nanowires with enhanced photocatalytic hydrogen evolution. Nanotechnology,27:22LT01,2016.
[17] Sampaio MJ, Oliveira JW, Sombrio CI, Baptista DL, Teixeira SR, Carabineiro SA, et al. Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol. Applied Catalysis A: General,518:198-205,2016.
[18] Yuan Y-J, Tu J-R, Ye Z-J, Lu H-W, Ji Z-G, Hu B, et al. Visible-light-driven hydrogen production from water in a noble-metal-free system catalyzed by zinc porphyrin sensitized MoS2/ZnO. Dyes and Pigments,123:285-92,2015.
[19] Zhan X, Bao Y, Wang F, Wang Q, Cheng Z, Wang Z, et al. Surface plasmon resonance enhanced light absorption of Au decorated composition-tuned ZnO/ZnxCd1− xSeyTe1− y core/shell nanowires for efficient H2 production. Applied Physics Letters,106:123904,2015.
[20] Hwang S-H, Seo H-J, Kim YK, Lim SK. Solar hydrogen production of ZnO horn electrodeposited on carbon film. Materials Science in Semiconductor Processing,41:226-32,2016.
[21] Yuan Y-J, Wang F, Hu B, Lu H-W, Yu Z-T, Zou Z-G. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst. Dalton Transactions,44:10997-1003,2015.
[22] Guo S-y, Zhao T-j, Jin Z-q, Wan X-m, Wang P-g, Shang J, et al. Self-assembly synthesis of precious-metal-free 3D ZnO nano/micro spheres with excellent photocatalytic hydrogen production from solar water splitting. Journal of Power Sources,293:17-22,2015.
[23] Li M, Hu Y, Xie S, Huang Y, Tong Y, Lu X. Heterostructured ZnO/SnO2− x nanoparticles for efficient photocatalytic hydrogen production. Chemical Communications,50:4341-3,2014.
[24] Huo J, Fang L, Lei Y, Zeng G, Zeng H. Facile preparation of yttrium and aluminum co-doped ZnO via a sol–gel route for photocatalytic hydrogen production. Journal of Materials Chemistry A,2:11040-4,2014.
[25] Zhan X, Wang Q, Wang F, Wang Y, Wang Z, Cao J, et al. Composition-Tuned ZnO/ZnxCd1–xTe Core/Shell Nanowires Array with Broad Spectral Absorption from UV to NIR for Hydrogen Generation. ACS applied materials & interfaces,6:2878-83,2014.
[26] Guo S, Han S, Mao H, Dong S, Wu C, Jia L, et al. Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure. Journal of Power Sources,245:979-85,2014.
[27] Martha S, Reddy KH, Parida K. Fabrication of In2O3 modified ZnO for enhancing stability, optical behaviour, electronic properties and photocatalytic activity for hydrogen production under visible light. Journal of Materials Chemistry A,2:3621-31,2014.
[28] Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, et al. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angewandte Chemie,117:1295-9,2005.
[29] Kimi M, Yuliati L, Shamsuddin M. Preparation and characterization of In and Cu co-doped ZnS photocatalysts for hydrogen production under visible light irradiation. Journal of Energy Chemistry,25:512-6,2016.
[30] Lee G-J, Anandan S, Masten SJ, Wu JJ. Photocatalytic hydrogen evolution from water splitting using Cu doped ZnS microspheres under visible light irradiation. Renewable Energy,89:18-26,2016.
[31] Yue S, Wei B, Guo X, Yang S, Wang L, He J. Novel Ag2S/ZnS/carbon nanofiber ternary nanocomposite for highly efficient photocatalytic hydrogen production. Catalysis Communications,76:37-41,2016.
[32] Wang L, Chen H, Xiao L, Huang J. CuS/ZnS hexagonal plates with enhanced hydrogen evolution activity under visible light irradiation. Powder Technology,288:103-8,2016.
[33] Xiao L, Chen H, Huang J. Visible light-driven photocatalytic H2-generation activity of CuS/ZnS composite particles. Materials Research Bulletin,64:370-4,2015.
[34] Jiang D, Sun Z, Jia H, Lu D, Du P. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. Journal of Materials Chemistry A,4:675-83,2016.
[35] Zhang J, Qi L, Ran J, Yu J, Qiao SZ. Ternary NiS/ZnxCd1‐xS/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H2‐Production Activity. Advanced Energy Materials,4,2014.
[36] Yang X, Xue H, Xu J, Huang X, Zhang J, Tang Y-B, et al. Synthesis of porous ZnS: Ag2S nanosheets by ion exchange for photocatalytic H2 generation. ACS applied materials & interfaces,6:9078-84,2014.
[37] Wang J, Lim Y-F, Ho GW. Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution. Nanoscale,6:9673-80,2014.
[38] Xie YP, Yu ZB, Liu G, Ma XL, Cheng H-M. CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy & Environmental Science,7:1895-901,2014.
[39] Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, et al. Zn1–xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity. ACS Catalysis,3:882-9,2013.
[40] Preethi V, Kanmani S. Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. international journal of hydrogen energy,39:1613-22,2014.
[41] Zhang J, Wang Y, Zhang J, Lin Z, Huang F, Yu J. Enhanced photocatalytic hydrogen production activities of Au-loaded ZnS flowers. ACS applied materials & interfaces,5:1031-7,2013.
[42] Hsu M-H, Chang C-J, Weng H-T. Efficient H2 Production Using Ag2S-Coupled ZnO@ ZnS Core–Shell Nanorods Decorated Metal Wire Mesh as an Immobilized Hierarchical Photocatalyst. ACS Sustainable Chemistry & Engineering,4:1381-91,2016.
[43] Chang C-J, Huang K-L, Chen J-K, Chu K-W, Hsu M-H. Improved photocatalytic hydrogen production of ZnO/ZnS based photocatalysts by Ce doping. Journal of the Taiwan Institute of Chemical Engineers,55:82-9,2015.
[44] Xitao W, Rong L, Kang W. Synthesis of ZnO@ ZnS–Bi2S3 core–shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance. Journal of Materials Chemistry A,2:8304-13,2014.
[45] Hong E, Kim JH. Oxide content optimized ZnS–ZnO heterostructures via facile thermal treatment process for enhanced photocatalytic hydrogen production. international journal of hydrogen energy,39:9985-93,2014.
[46] Liu S, Wang X, Wang K, Lv R, Xu Y. ZnO/ZnS–PdS core/shell nanorods: synthesis, characterization and application for photocatalytic hydrogen production from a glycerol/water solution. Applied Surface Science,283:732-9,2013.
[47] Liu S, Wang X, Zhao W, Wang K, Sang H, He Z. Synthesis, characterization and enhanced photocatalytic performance of Ag2S-coupled ZnO/ZnS core/shell nanorods. Journal of Alloys and Compounds,568:84-91,2013.
[48] Wang Z, Cao S-W, Loo SCJ, Xue C. Nanoparticle heterojunctions in ZnS–ZnO hybrid nanowires for visible-light-driven photocatalytic hydrogen generation. CrystEngComm,15:5688-93,2013.
[49] Li Y, Lin S, Peng S, Lu G, Li S. Modification of ZnS1− x− 0.5 yOx(OH)y–ZnO photocatalyst with NiS for enhanced visible-light-driven hydrogen generation from seawater. International Journal of Hydrogen Energy,38:15976-84,2013.
[50] Sang HX, Wang XT, Fan CC, Wang F. Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route. international journal of hydrogen energy,37:1348-55,2012.
[51] Li Y, He F, Peng S, Lu G, Li S. Photocatalytic H2 evolution from NaCl saltwater over ZnS1− x− 0.5 yOx(OH)y–ZnO under visible light irradiation. international journal of hydrogen energy,36:10565-73,2011.
[52] Li Y, Ma G, Peng S, Lu G, Li S. Photocatalytic H2 evolution over basic zincoxysulfide (ZnS1− x− 0.5 yOx(OH)y) under visible light irradiation. Applied Catalysis A: General,363:180-7,2009.
[53] 王澍涵. 石墨相氮化碳基光催化材料的製備與性能研究. 材料複合新技術國家重點研究室.
[54] Yang X, Huang H, Kubota M, He Z, Kobayashi N, Zhou X, et al. Synergetic effect of MoS2 and g-C3N4 as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Materials Research Bulletin,76:79-84,2016.
[55] Zhang Z, Liu K, Feng Z, Bao Y, Dong B. Hierarchical Sheet-on-Sheet ZnIn2S4/g-C3N4 Heterostructure with Highly Efficient Photocatalytic H2 production Based on Photoinduced Interfacial Charge Transfer. Scientific reports,6,2016.
[56] Wei X, Shao C, Li X, Lu N, Wang K, Zhang Z, et al. Facile in situ synthesis of plasmonic nanoparticles-decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution. Nanoscale,8:11034-43,2016.
[57] Zeng Y, Wang Y, Chen J, Jiang Y, Kiani M, Li B, et al. Fabrication of high-activity hybrid NiTiO3/g-C3N4 heterostructured photocatalysts for water splitting to enhanced hydrogen production. Ceramics International,2016.
[58] Zhao W, Xie L, Zhang M, Ai Z, Xi H, Li Y, et al. Enhanced photocatalytic activity of all-solid-state g-C3N4/Au/P25 Z-scheme system for visible-light-driven H2 evolution. International Journal of Hydrogen Energy,41:6277-87,2016.
[59] Yan Z, Sun Z, Liu X, Jia H, Du P. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light. Nanoscale,8:4748-56,2016.
[60] Jiang D, Li J, Xing C, Zhang Z, Meng S, Chen M. Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight. ACS applied materials & interfaces,7:19234-42,2015.
[61] Ran J, Ma TY, Gao G, Du X-W, Qiao SZ. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy & Environmental Science,8:3708-17,2015.
[62] Chen J, Shen S, Wu P, Guo L. Nitrogen-doped CeOx nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chemistry,17:509-17,2015.
[63] Zhu Y-P, Ren T-Z, Yuan Z-Y. Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance. ACS applied materials & interfaces,7:16850-6,2015.
[64] Zhao H, Dong Y, Jiang P, Miao H, Wang G, Zhang J. In situ light-assisted preparation of MoS2 on graphitic C3N4 nanosheets for enhanced photocatalytic H2 production from water. Journal of Materials Chemistry A,3:7375-81,2015.
[65] Hu B, Cai F, Chen T, Fan M, Song C, Yan X, et al. Hydrothermal Synthesis g-C3N4/Nano-InVO4 Nanocomposites and Enhanced Photocatalytic Activity for Hydrogen Production under Visible Light Irradiation. ACS applied materials & interfaces,7:18247-56,2015.
[66] Chang C-J, Chu K-W, Hsu M-H, Chen C-Y. Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance. International Journal of Hydrogen Energy,40:14498-506,2015.
[67] Zhang J, Wang P, Sun J, Jin Y. High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core–satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and H2 production from water. ACS applied materials & interfaces,6:19905-13,2014.
[68] Liu M, Li F, Sun Z, Ma L, Xu L, Wang Y. Noble-metal-free photocatalysts MoS 2–graphene/CdS mixed nanoparticles/nanorods morphology with high visible light efficiency for H2 evolution. Chemical Communications,50:11004-7,2014.
[69] Huang Q, Tian S, Zeng D, Wang X, Song W, Li Y, et al. Enhanced photocatalytic activity of chemically bonded TiO2/graphene composites based on the effective interfacial charge transfer through the C–Ti bond. ACS Catalysis,3:1477-85,2013.
[70] Kumar DP, Reddy NL, Karthik M, Neppolian B, Madhavan J, Shankar M. Solar light sensitized p-Ag2O/n-TiO2 nanotubes heterojunction photocatalysts for enhanced hydrogen production in aqueous-glycerol solution. Solar Energy Materials and Solar Cells,154:78-87,2016.
[71] Fujita S-i, Kawamori H, Honda D, Yoshida H, Arai M. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Applied Catalysis B: Environmental,181:818-24,2016.
[72] Panmand RP, Sethi YA, Deokar RS, Late DJ, Gholap HM, Baeg J-O, et al. In situ fabrication of highly crystalline CdS decorated Bi2S3 nanowires (nano-heterostructure) for visible light photocatalyst application. RSC Advances,6:23508-17,2016.
[73] Sang HX, Wang XT, Fan CC, Wang F. Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route. international journal of hydrogen energy,37:1348-55,2012.
[74] Crano NJ, Chambers RC, Lynch VM, Fox MA. Preparation and photocatalytic studies on a novel Ti-substituted polyoxometalate. Journal of Molecular Catalysis A: Chemical,114:65-75,1996.
[75] Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. Journal of the American Chemical Society,131:1680-1,2009.
[76] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature materials,8:76-80,2009.
[77] Dohrmann JK, Reck J. Photocorrosion of polycrystalline CdSe in aqueous KOH: an in situ study by photocalorimetry. Journal of Electroanalytical Chemistry,452:215-20,1998.
[78] Nowotny J, Sorrell C, Sheppard L, Bak T. Solar-hydrogen: environmentally safe fuel for the future. International journal of hydrogen energy,30:521-44,2005.
[79] Linsebigler AL, Lu G, Yates Jr JT. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews,95:735-58,1995.
[80] 羅聖全. 研究奈米科技的基本工具之一-電子顯微鏡介紹-SEM.
[81] 林智仁、羅聖全. 場發射穿透式電子顯微鏡簡介.
[82] 許宏泰、徐英展、陳志立、陳明勳. 穿透式電子顯微鏡.
[83] 鄭信民、林麗娟. X 光繞射應用簡介. 工業材料期刊:108,2002.
[84] 尤志州、王志傑、廖尉斯、黃冠群. 化學分析電子術.
[85] Hecht H. Reflectance Spectroscopy. Wiley-Interscience, New York; 1966.
[86] Boonprakob N, Wetchakun N, Phanichphant S, Waxler D, Sherrell P, Nattestad A, et al. Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. Journal of colloid and interface science,417:402-9,2014.
[87] Zhang J, Yu J, Zhang Y, Li Q, Gong JR. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Letters,11:4774-9,2011.
[88] Li Y, Wei X, Li H, Wang R, Feng J, Yun H, et al. Fabrication of inorganic–organic core–shell heterostructure: novel CdS@ g-C3N4 nanorod arrays for photoelectrochemical hydrogen evolution. RSC Advances,5:14074-80,2015.
[89] Mandal A, Dandapat A, De G. Magic sized ZnS quantum dots as a highly sensitive and selective fluorescence sensor probe for Ag+ ions. Analyst,137:765-72,2012.
[90] Al-Gaashani R, Radiman S, Daud AR, Tabet N, Al-Douri Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceramics International,39:2283-92,2013.
[91] Thuy UTD, Liem NQ, Parlett CM, Lalev GM, Wilson K. Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catalysis Communications,44:62-7,2014.
[92] Li X, Li M, Yang J, Li X, Hu T, Wang J, et al. Synergistic effect of efficient adsorption g-C3N4/ZnO composite for photocatalytic property. Journal of Physics and Chemistry of Solids,75:441-6,2014.
[93] Ye M, Wen X, Zhang N, Guo W, Liu X, Lin C. In situ growth of CuS and Cu1.8S nanosheet arrays as efficient counter electrodes for quantum dot-sensitized solar cells. Journal of Materials Chemistry A,3:9595-600,2015.
[94] Li Y, Wei X, Li H, Wang R, Feng J, Yun H, et al. Fabrication of inorganic–organic core–shell heterostructure: novel CdS@g-C3N4 nanorod arrays for photoelectrochemical hydrogen evolution. RSC Advances,5:14074-80,2015.
[95] Han C, Ge L, Chen C, Li Y, Xiao X, Zhang Y, et al. Novel visible light induced Co3O4-g-C3N4 heterojunction photocatalysts for efficient degradation of methyl orange. Applied Catalysis B: Environmental,147:546-53,2014.
[96] Lee G-J, Manivel A, Batalova V, Mokrousov G, Masten S, Wu J. Mesoporous microsphere of ZnS photocatalysts loaded with CuO or Mn3O4 for the visible-light-assisted photocatalytic degradation of orange II dye. Industrial & Engineering Chemistry Research,52:11904-12,2013.
[97] Yu L, Ruan H, Zheng Y, Li D. A facile solvothermal method to produce ZnS quantum dots-decorated graphene nanosheets with superior photoactivity. Nanotechnology,24:375601,2013.
[98] Slamet DT, Valentina and Muhammad Ibadurrohman. Photocatalytic hydrogen production from glycerol–water mixture over Pt-N-TiO2 nanotube photocatalyst. Int J Energy Res 2013; 37:1372–1381.
[99] 趙康如. 碳修飾與石墨烯量子點於光催化分解水產氫之研究.國立清華大學化學工程學系,2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top