跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳瑩
研究生(外文):Chia-Ying Lin
論文名稱:網路廣告平台之競爭模型
論文名稱(外文):A Competitive Model for Online Advertising Platforms
指導教授:李瑞庭李瑞庭引用關係
口試委員:蕭櫓陳柏安
口試日期:2015-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:44
中文關鍵詞:網路廣告平台社群化廣告投放準確度準確度分析成本
外文關鍵詞:online advertising platformssocializationtargeting accuracytargeting cost
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
數位廣告在近幾年迅速成長,網路廣告平台可以透過平台所蒐集的資料分析顧客的喜好,將廣告以更精準的方式傳送給特定的顧客,廣告投放效益取決於平台的廣告投放準確度與社群化程度,當社群化程度越高,使用者互動越頻繁,彼此的聯繫越高,廣告的口碑效應越高,廣告投放效益越大。因此,在本篇論文中,我們提出一競爭模型以探討平台的社群化程度、廣告投放準確度與平台上的使用者人數對網路廣告平台的影響。其中,當準確度分析成本小時,網路廣告平台的社群化程度越高以及人數差異越大,則會使得具有社群化優勢的廣告平台的利潤降低;而準確度分析成本大時,此廣告平台的利潤會隨著社群化程度和人數差異提高而增加。當兩家競爭程度降低,則處於劣勢的廣告平台的利潤則會提高,而具有優勢的平台則會因為準確度分析成本的大小而有不同的走向。廣告平台利潤的高低取決於兩個平台的社群化優勢與人口優勢的權衡結果,權衡之後,當準確度分析成本小時,較有優勢的平台的利潤較低,而當準確度分析成本大時,較有優勢的平台的利潤較高,本研究成果可幫助網路廣告平台根據市況擬定有效的競爭策略。

Digital advertising has grown rapidly in recent years, where online advertising platforms may deliver ads to target customers more precisely than traditional advertising providers since they know customers better by mining customers’ preferences from the data collected on their platforms. The ad effectiveness on an online advertising platform may be influenced by its targeting accuracy and degree of socialization. The higher degree of socialization, the stronger social interaction and tie among users on the platform, which may lead to the larger word-of-mouth effect. Therefore, in this thesis, we propose a model to study how online advertising platforms are affected by the degree of socialization, targeting cost, and amount of users on each platform. When the targeting cost is low, the profit of platform with advantage in socialization decreases with the degree of socialization and difference between the amounts of users of both platforms. When targeting cost is high, the profit of platform with advantage in socialization increases with the degree of socialization and difference between the amounts of users of both platforms. The profit of platform with disadvantage in socialization increases when the competition is getting weaker; however, the profit of platform with advantage in socialization increases first and decreases when the targeting cost is low, and decreases then increases when the targeting cost is high. In addition, which platform is more profitable is decided by trading off the advantage in socialization of one platform and the advantage in amount of users on the other. The platform with more advantage after the trade-off is less profitable when the targeting cost is low; however, it is more profitable when the targeting cost is high. Therefore, our proposed model may help online advertising platforms trade off the advantage in socialization of one platform and the advantage in amount of users, and formulate effective strategies.

Table of Contents i
List of Figures ii
List of Tables iii
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
Chapter 3 Baseline Model 8
Chapter 4 Extended Model 16
Chapter 5 Conclusions and Future Work 29
References 33
Appendix A 35
Appendix B 39

Bergemann D, Bonatti A (2011). Targeting in advertising markets: Implications for offline versus online media. The RAND Journal of Economics. 42(3) 417-443.
Chen Y, Narasimhan C, Zhang ZJ (2001). Individual marketing with imperfect targetability. Marketing Science. 20(1) 23-41.
Chen Y, Xie J (2007). Cross-market network effect with asymmetric customer loyalty: Implications for competitive advantage. Marketing Science. 26(1) 52-66.
Dukes A (2004). The adverstising market in a product oligopoly. The Journal of Industrial Economics. 52(3) 327-348.
Dukes A, Gal–Or E (2003). Negotiations and exclusivity contracts for advertising. Marketing Science. 22(2) 222-245.
Esteban L, Gil A, Hernández JM (2001). Informative advertising and optimal targeting in a monopoly. The Journal of Industrial Economics. 49(2) 161-180.
Gal-Or E, Gal-Or M (2005). Customized advertising via a common media distributor. Marketing Science. 24(2) 241-253.
Gal-Or E, Gal-Or M, May JH, Spangler WE (2006). Targeted advertising strategies on television. Management Science. 52(5) 713-725.
Ghosh BP, Galbreth MR, Shang G (2013). The competitive impact of targeted television advertisements using dvr technology. Decision Sciences. 44(5) 951-971.
Godes D, Ofek E, Sarvary M (2008). Content vs. Advertising: The impact of competition on media firm strategy. Marketing Science. 28(1) 20-35.
Goel S, Goldstein DG (2013). Predicting individual behavior with social networks. Marketing Science. 33(1) 82-93.
Hotelling H (1929). Stability in competition. The Economic Journal. 39(153) 41-57.
Iyer G, Soberman D, Villas-Boas JM (2005) The targeting of advertising. Marketing Science. 24(3) 461-476.
Kind HJ, Nilssen T, S⊘rgard L (2007). Competition for viewers and advertisers in a TV oligopoly. Journal of Media Economics. 20(3) 211-233.
Sayedi A, Jerath K, Srinivasan K (2014). Competitive poaching in sponsored search advertising and its strategic impact on traditional advertising. Marketing Science. 33(4) 586-608.
Zhang K, Katona Z (2012). Contextual advertising. Marketing Science. 31(6) 980-994.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top