跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 05:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳奕成
研究生(外文):CHEN, I-CHENG
論文名稱:垂直式人工反鐵磁多層膜結構 MgO/CoFeB/Ru/CoFeB/MgO之自旋霍爾效應
論文名稱(外文):Spin Hall Effect of perpendicular magnetic synthetic antiferromagnetic structure MgO/CoFeB/Ru/CoFeB/MgO
指導教授:陳恭陳恭引用關係
指導教授(外文):Gung Chern
口試委員:蔡崇智蔡炎熾
口試委員(外文):Tsung-Chih TsaiYan-Chr Tsai
口試日期:2015-06-11
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:68
中文關鍵詞:自旋霍爾效應自旋軌道力矩鈷鐵硼人工反鐵磁結構垂直磁異向性
外文關鍵詞:Spin Hall Effectspin-orbital torqueCoFeBSynthetic antiferromagnetic structurePerpendicular magnetic anisotropy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本論文拓展電流誘發翻轉的研究,利用濺鍍方式製作反鐵磁耦合結構MgO/CoFeB/Ru/CoFeB/MgO的薄膜,此結構由於MgO/CoFeB界面效應,具備垂直磁異向性(PMA)特性。詳細的膜厚為Sub/ Ta(10)/ MgO(1)/ CoFeB(1.2)/ Ru(2.2)/ CoFeB(1.2) / MgO(1) / Ta(3) 單位是nm。我們將其蝕刻成10μm x 100μm之Hall bar元件。量測的方式是將電流注入Hall bar元件中,電流方向為縱向方向,施加外加磁場的方向是沿著電流方向(或與易磁化軸夾θ角度)進行異常霍爾電性量測,實驗主要分為兩部分:
1.異常霍爾效應(AHE)量測
改變電流密度的方向及大小進行磁場掃描,有系統地整理霍爾電阻的曲線,並根據這些曲線的特徵以及磁性態畫出H-J相圖。這些相圖的特點因為正負電流產生之等效場方向不同,導致圖形左右對稱性破壞。
2.電流驅動磁矩翻轉
在此實驗中需加入固定微小的磁場,進行電流掃描,當電流達到臨界電流時,磁矩發生翻轉。根據這些曲線的臨界電流大小畫出J-H相圖。此相圖呈現出以下特點:電流密度為正時, 臨界電流約為36 MA/cm2,當外加磁場增加,臨界電流值為負並乎呈線性從-20 MA/cm2遞減至-9 MA/cm2。此現象與材料中的耦合能大小有關,在文中有詳細的討論。另外,此結構在不施加外加磁場的情況下亦能引發磁矩翻轉之現象,表示系統面內的對稱性破缺的特性,同時此零場翻轉的現象有具有未來製作元件的潛力。

Abstract
We fabricated a coupled ferromagnetic structure of MgO/CoFeB/Ru/ CoFeB/MgO and studied current induced magnetic switching in this system. The exchange coupling between CoFeB layers is through the Ru spacer and the MgO layers on the side provide the interfacial perpendicular magnetic anisotropy (PMA). The thickness of each layer is given as: Sub/Ta(10)/MgO(1)/CoFeB(1.2)/Ru(2.2)/CoFeB(1.2)/MgO(1)/Ta(3) (all units: nm). The film is then etched into a Hall bar with width of 10 μm and length of 100 μm.
The Hall resistance is measured by injecting a current alon ghte Hall bar longitudinal direction. During the measurement, an external magnetic field may apply at different direction. The results are divided into two parts:
(1) The measurement of anomalous Hall effect (AHE)
Varying the direction and magnitude of the current density and systematically measured Hall resistance curve. Based on the characteristic of the Hall loops, the H-J phase diagram are mapped out. The phase diagram typically shows asymmetry between the positive and negative. In addition, multiple switching is observed in some regions.
(2) Current driven magnetic reversal
The Hall resistance is measured as a function of current density under a small in-plane magnetic field. During the measurements, when the current reaches critical values, the Hall resistance shows switching behavior. J-H diagrams are the mapped out. The critical current density is ~ 36 MA/cm2 and stays constant as the current is positive. However, the critical current density decreases from -20 MA/cm2 to -9 MA/cm2 as the current is negative.
Moreover, we found that the current induced magnetic switching occurs in these coupled double ferromagnetic layered structure. This zero-field switching indicates that the up-down symmetry is intrinsically broken and this feature may have application potential.

Keywords:Spin Hall Effect、spin-orbital torque、Synthetic antiferromagnetic structure、CoFeB、Perpendicular magnetic anisotropy

目錄
第一章 序論...................................................... 1
第二章 理論背景與文獻回顧......................................... 2
2.1 自旋轉移力矩 (Spin transfer torque).......................... 2
2.2 自旋霍爾效應 (Spin Hall Effect,SHE).......................... 3
2.3 Landau-Lifshitz-Gilbert Equation[7].........................5
2.4 霍爾效應 (Hall Effect,HE)....................................7
2.5 異常霍爾效應 (Extraordinary Hall Effect,EHE)................. 8
2.6 文獻回顧.....................................................9
第三章 實驗製程與操作.............................................16
3.1 樣品製作流程.................................................16
3.2 異常霍爾(AHE)量測............................................ 19
第四章 實驗結果與討論............................................. 21
4.1 樣品結構分析................................................. 22
4.2 探討電流密度(J)與翻轉場(Hc)對SHE之影響......................... 27
4.3 HZ方向的Hc測量與SHE的探討....................................35
4.4 自旋霍爾效應之等效場方向......................................39
4.5 電流誘發磁化翻轉(Current induce magnetization switching)......44
4.5.1 雙層系統中零場翻轉..........................................46
4.5.2 電流驅動磁化翻轉之電流密度比較............................... 48
4.5.3 改變易軸與外加磁場夾角之結果................................. 50
4.5.4 電流翻轉與磁場翻轉機制分析...................................54
第五章 結論......................................................55
附錄............................................................56
附錄一 實驗儀器設備與原理..........................................56
附錄二 磁場掃描完整數據............................................61
磁場翻轉 θ=89° (完整正電流R-H曲線) ................................61
磁場翻轉 θ=89° (完整負電流R-H曲線)................................ 62
磁場翻轉 θ=92°(完整正電流R-H曲線)................................. 63
磁場翻轉 θ=92°(完整負電流R-H曲線)................................. 64
附錄三 電流掃描完整數據........................................... 65
電流翻轉 θ=89°...................................................65
電流翻轉 θ=92°...................................................66
參考文獻.........................................................67


參考文獻
[1] Guoqiang Yu, Pramey Upadhyaya, Kin L. Wong, Wanjun Jiang, Juan G. Alzate, Jianshi Tang, Pedram Khalili Amiri, and Kang L. Wang Phys. Rev. B 89, 104421 (2014)
[2] C.Zhang, M.Yamanouchi, H.Sato, S. Fukami, S.Ikeda, F. Matsukura and H. Ohno Journal of Applied Physics 115, 17C714 (2014)
[3] Luqiao Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, and R. A. Buhrman Phys. Rev. Lett. 109, 096602 (2012)
[4] Xin Fan, Jun Wu, Yunpeng Chen, Matthew J. Jerry, Huaiwu Zhang & John Q. Xiao Nature Communications 4, Article number: 1799 (2013)
[5] Long You, OukJae Lee, Debanjan Bhowmik, Dominic Labanowski, Jeongmin Hong, Jeffrey Bokor, Sayeef Salahuddin (2014)
[6] J. E. Hirsch Phys. Rev. Lett. 83, 1834 (1999)
[7] L’ubom´ır Baˇnas” Numerical Methods for the Landau-Lifshitz-Gilbert Equation” ()
[8] 王凱鵬,“垂直式人工反鐵磁多層膜在外加磁場及電流驅動之翻轉特性探”國立中正大學物理系研究所碩士論文討 (2014)
[9] 游劉傳,“Ta/CoFeB/MgO與MgO/CoFeB/Ta上下結構的自旋霍爾效應驅動磁翻轉之比較與異向能對其影響之探討”國立中正大學物理系研究所碩士論文討 (2015)
[10] Luqiao Liu, Chi-Feng Pai1, Y. Li, H. W. Tseng, D. C. Ralph, R. A. Buhrman Science 336,555 (2012)
[11] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue Phys. Rev. B 77, 165117 (2008)
[12] C. F. Pai, L. Q. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012).
[13] 鍾政廷,“自旋霍爾效應驅動之磁翻轉:模擬與實驗的比較”國立中正大學物理系研究所碩士論文討 (2015)
[14] 吳忠陽,“Ta(Nb)/Co20Fe60B20/MgO異質結構中電流引起之等效場探討”國立中正大學物理系研究所碩士論文討 (2014)
[15] 鄭琮譯, “MgO-CoFeB-Nb(or Ru)-CoFeB-MgO 結構之交換耦合及垂直異向性探討”國立中正大學物理系研究所碩士論文討(2012)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊