|
1. Abarzua, P., LoSardo, J. E., Gubler, M. L., Spathis, R., Lu, Y. A., Felix, A., and Neri, A. (1996). Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene, 13:2477-82. 2. Agarwal, M. L., Agarwal, A., Taylor, W. R., and Stark, G. R.(1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci., USA 92:8493-8497. 3. Agoff, S. N., Hou, J., Linzer, D. I., and Wu, B. (1993). Regulation of the human hsp70 promoter by p53. Science, 259:84-87. 4. Ania, M., W., Jenniffer, L. F., Matthew, J. F., Waterman, and Thanos, D. H. (1996). Structure-based rescue of common tumor-derived p53 mutants. Nature Med., 2:1143-1146. 5. Attardi, L. D., Lowe, S. W., Brugarolas, J., and Jacks, T. (1996). Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO. J., 15(14):3693-701. 6. Baker, S. J., Fearon, E. R.,dand Nigro, J. M. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 244:217-221. 7. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K., and Vogelstein, B. (1990). Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 249:912-915. 8. Barak, Y., Gottlieb, E., Juven, T., and Oren, M. (1994). Regulation of mdm2 expression by p53:alternative promoters produce transcripts with nonidentical translation potential. Genes & Dev., 8:1739-49. 9. Barak, Y., Juven, T., Haffner, R., and Oren, M. (1993). Mdm2 expression is induced by wild type p53 activity. EMBO. J., 12:461-468. 10. Ben, D. Y., Prideaux, V. R., Chow, V., Benchimol, S., and Bernstein, A. (1988). Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene, 3(2):179-85. 11. Benchimol, S., Lamb, P., Crawford, L. V., Sheer, D., Shows, T. B., Bruns, G. A., and Peacock, J. (1985). Transformation associated p53 protein is encoded by a gene on human chromosome 17. Somat. Cell Mol. Genet., 11 :505-10. 12. Bouck, N. (1996). p53 and angiogenesis. Biochim. Biophys. Acta., 1287:63-66. 13. Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S., and Reddel, R. R. (1995). Telomere elongation in immortal human cells without detectable telomerase activity. EMBO. J., 14:4240-8. 14. Bueso-Ramos, C. E., Manshouri, T., Haidar, M., Huh, YO, Keating, M. J., and Albitar, M. (1995). Multiple patterns of MDM2 deregulation in human leukemias:Implication in lekemogenesis and prognosis. Leuk. Lymph., 17:13-18. 15. Bueso-Ramos, C. E., Manshouri, T., Yang, Y., McCown, N. G., Sneige, N., and Albitar, M. (1996). Abnormal expression of multiple MDM-2 proteins in breast carcinomas. Breast, Cancer, Res. Treat., 85:29-40. 16. Bueso-Ramos, C. E.,Yang, Y., Manshouri, T., Feltz, L., Ayala, A., Glassman, A. B., and Albitar, M. ( 1995 ). Molecular abnormalities of MDM-2 in human sarcomas. Int. J. Oncol., 7:1043-1048. 17. Carlos, E., Bueso-Ramos, Yun, Yang, Elizabeth, D., Patrick, M., Sanford, A., and Albitar, M. (1993). The human MDM-2 oncogene is overexpressed in leukemias. Blood, 82:2617-2623. 18. Caron, De., Fromentel, C., and Soussi, T., (1992). TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes. Chromosom. Cancer, 4:1-15. 19. Chen, P. L., Chen, Y. M., Bookstein, R., and Lee, W. H., (1990). Genetic mechanisms of tumor suppression by the human p53 gene. Science, 250:1576-80. 20. Chen, S. H., Shine, H. D., and Goodman, J. C. (1994). Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci., USA 91:3054-57 21. Chiba, I., Takahashi, T., Nau, M. M., D’Amico, D., Curiel, D. T., Mitsudomi, T., Buchhagen, D. L., Carbone, d., Piantadosi, S., Koga, h., Reissman, P. T., Slamon, D. J., Holmes, E. C., and Minna, J. D.(1990). Mutations in the p53 gene are frequent in primary,resected non-small cell lung cancer. Oncogene, 5:1603-1610. 22. Chiba, I., Takahashi, T., Nau, M., D’Amico, D., Curiel, D. T., Mitsudomi, T., Buchhagen, D L., Carbone, D., Piantadosi, S., Koga, H., Davidson, N., Baylin, S., Devilee, P., Glover, T., Collins, F. S., Weston, A., Modali, R., Harris, C. C., and Vogelstein, B. (1989). Mutations in the p53 gene occur in diverse human tumor types. Nature (Land.), 342:705-708. 23. Chin, K. V., Ueda, K., Pastan, I., and Gottesman, M. M. (1992). Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science, 255:459-462. 24. Cho, Y., Gorina, S., Jeffrey, P. D., and Pavletich, N. P., (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265:346-355. 25. Chow, V., Ben-David, Y., Bernstein, A., Benchimol, S., and Mowat, M. (1987). Multistage Friend erythroleukemia: independent origin of tumor clones with normal or rearranged p53 cellular oncogenes. J. Virol., 61:2777-81. 26. Clore, G. M., Omichinski, J. G., Sakaguchi, K., Zambrano, N., Sakamoto, H., Appella, E., and Gronenborn, A. M. (1995). High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science, 265:386-91. 27. Cook, A., and Milner, J. (1990). Evidence for allosteric variants of wild-type p53, a tumour suppressor protein. Br. J. Cancer, 61:548-52. 28. Dang, C. V., and Lee, W. M. (1989). Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem., 264:18019-23. 29. DeLeo, A. B., Jay, G., Appella, E., Dubois, G. C., Law, L. W., and Old, L. J., (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl. Acad. Sci., USA 76:2420-4. 30. Diller, L., Kassel, J., and Nelson, C. E. (1990). p53 Functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol., 10:5772-5781. 31. Dittmer, D., Pati, S., and Zambetti, G. (1993). Gain of function mutations in p53. Nat. Genet., 4:42-46. 32. Dutta, A., Ruppert, J. M., Aster, J. C., Winchester, E. (1993). Inhibition of DNA replication factor RPA by p53. Nature, 365:79-82. 33. Ehrhart, J. C,. Duthu, A., Ullrich, S., Appella, E., and May, P. (1988). Specific interaction between a subset of the p53 protein family and heat shock proteins hsp72/hsc73 in a human osteosarcoma cell line. Oncogene, 3:595-603. 34. El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., and Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nature, Genet., 1:45-9. 35. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993). WAF1,a potential mediator of p53 tumor suppression. Cell, 75:817-825. 36. Eliyahu, D., Goldfinger, N., Pinhasi-Kimhi, O., Skurnik, Y., Arai, N., Rotter, V., and Oren, M. Meth. (1988). A fibrosarcoma cells express two transforming mutant p53 species. Oncogene, 3:313-321. 37. Eliyahu, D., Raz, A., Gruss, P., Givol, D., and Oren, M. (1984). Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature, 312:646-9. 38. Fields, S., and Jang, S. K. (1990). Presence of a potent activating sequence in the p53 protein. Science, 249:1046-9. 39. Finlay, C. A., Hinds, P. W., and Levine, A. J.(1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57:1083-1093. 40. Foulkes, W. D., Stamp, G. W. H., Afzal, S., Lalani, N., McFarlane, C. P., Trowsdale, J., and Campbell, I. G. (1995). MDM2 overexpression is rare in ovarian carcinoma irrespective of TP53 mutation status. Br. J. Cancer, 67:551-559. 41. Funk, W. D., Pak, D. T., Karas, Wright, W. E., and Shay, J. W. (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol., 12:2866-2871. 42. Galina, S., Lotsova, V., Kiseleva, E., Strom, M., Bakalkin, G., Grafstrom, R. C., and Wiman, K. G. (1996). The single-stranded DNA end dinding site of p53 coincides with the C-terminal regulatory region. Nucleic, Acids, Res., 24:3560-3567. 43. Galina, S., Ryabchenko, L., Jansson, E., Iotsova, V., and Wiman, K. G. (1999). Reactivation of mutant p53 through interaction of C-terminal peptide with the core domain. Mol. Cell. Biol., 19:3395-3402. 44. Gannon, J. V., and Lane, D. P. (1991) Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature (Lond.), 349:802-806. 45. Gannon, J. V., Greaves, R., Iggo, R., and Lane, D. P..(1990). Activating mutations in p53 produce a common conformational effect: a monoclonal antibody specific for the mutant form. EMBO. J., 9:1595-12602. 46. Ginsberg, D., Mechta, F., Yaniv, M., and Oren, M. (1991). Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci., USA 88:9979-83. 47. Givoanni, B., Aronold, J., Levine, and Oren, M. (1999). Mutant p53 gain of function:differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 18:477-485. 48. Gorgoulis, V. G., Zacharatos, P. V., Manolis, E., Ikonomopoulos, J. A., Damalas, A., Lamprinopoulos, C., Rassidakis, G. Z., Zoumpourlis, V., Kotsinas, A., Rassidakis, A., N., Halazonetis, T. D., and Kittas, C. (1998). Effects of p53 mutants derived from lung carcinomas on the p53-responsive element (p53RE) of the MDM2 gene. Br. J. Cancer, 77:374-84, 49. Gorgoulis, V., Rassidakis, G., Karameris, A., Papastamatiou, H., Trigidou, R., Veslemes, M., Rassidakis, A., and Kittas, C. (1996). Immunohistochemical and molecular evaluation of the MDM2 gene product in bronchogenic carcinoma. Mod. Path., 9:544-554. 50. Gorina, S., and Pavletich, N. P. (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science, 274:1001-5. 51. Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90:595-606. 52. Hainaut, P., and Milner, J. (1993). Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res., 53:4469-73. 53. Halazonetis, T. D., Davies, L. J., and Kandil, A. N. (1993). Wild-type p53 adopts a “mutant”-like conformation when bound to DNA. EMBO. J., 12:1021-1028. 54. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387:296-299. 55. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H., and Oren, M. (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes, Dev., 9: 2170-83. 56. He, Z., Brinton, B. T., Greenblatt, J., Hassell, J. A., and Ingles, C. J. (1993). The transactivator proteins VP16 and GAL4 bind replication factor A. Cell, 73:1223-32. 57. Hinds, P. W., Finlay, C. A., Frey, A. B., and Levine, A. J. (1987). Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol. Cell. Biol., 7:2863-9. 58. Hinds, P. W., Finlay, C. A., Quartin, R. S., Baker, S. J., Fearon, E. R., Vogelstein, B., and Levine, A. J. (1990). Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the "hot spot" mutant phenotypes. Cell, Growth, & Differ., 1:571-80. 59. Hoilstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., and Sorlie, T. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic, Acids, Res., 22: 3551-3555. 60. Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., and Sorlie, T. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic, Acids, Res., 22: 3551-3555. 61. Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R., and Harris, C. C. (1996). Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic, Acids, Res., 24(1):141-6. 62. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. Science, 253:49-55. 63. Horikoshi, N., Usheva, A., Chen, J., Levine, A. J., Weinmann, R., and Shenk, T. (1995). Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol. Cell. Biol., 15:227-34. 64. Hupp, T. R., and D. R., W. Meek, C. A. Midgley, and Lane, D. P. (1992). Regulation of the specific DNA binding function of mutant forms of p53. Nucleic, Acids, Res., 21:3167-3174. 65. Hupp, T. R., and Lane, D. P. (1994). Allosteric activation of latent p53 tetramers. Curr. Biol., 4:865-75. 66. Hupp, T. R., and Lane, D. P. (1994). Regulation of the cryptic sequence -specific DNA-binding function of p53 by protein kinases. Cold, Spring Harbor Symp Biol., 59: 195-206. 67. Hupp, T. R., Meek, D. W., Midgley, C. A., and Lane, D. P. (1992). Regulation of the specific DNA binding function of p53. Cell, 71:875-86. 68. Hupp, T. R., Sparks, A., and Lane, D. P. (1995). Small peptides activate the latent sequence-specific DNA binding function of p53. Cell, 83: 237-245. 69. Iggo, R., Gatter, K., Bartek, J., Lane, D., and Harris, A. L. (1990). Increased expression of mutant forms p53 oncogene in primary lung cancer. Lancet., 335:675-679. 70. Iwabuchi, K., Bartel, P. L., Li, B., Marraccino, R., and Fields, S. (1994). Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci., USA 91:6098-102. 71. Jeffrey, P. D., Gorina, S., and Pavletich, N. P. (1995). Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science, 267:1498-502. 72. Jenkins, J. R., Chumakov, P., Addison, C., Sturzbecher, H. W., and Wade-Evans, A. (1988). Two distinct regions of the murine p53 primary amino acid sequence are implicated in stable complex formation with simian virus 40 T antigen. J. Virol., 62:3903-3906. 73. Jenkins, J. R., Rudge, K., and Currie, G. A. (1984). Cellular immortalization by a cDNA clone encoding the transformation -associated phosphoprotein p53. Nature, 312:651-4. 74. Jenkins, J. R., Rudge, K., Chumakov, P., and Currie, G. A. (1985). The cellular oncogene p53 can be activated by mutagenesis. Nature, 317:816-8. 75. Kaczmarek, L., Oren, M., and Baserga, R. (1986). Co-operation between the p53 protein tumor antigen and platelet-poor plasma in the induction of cellular DNA synthesis. Exp. Cell, Res., 162:268-272. 76. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer, Res., 51: 6304-11. 77. Kastan, M. B., Zhan, Q., and El-Deiry, W. S. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 71:587-97. 78. Kern, J. A., Schwartz, D. A., and Nordberg, J. E. (1991). Neu expression in human lung adenocarcinomas predict shortened survival. Cancer, Res., 50:5184-91. 79. Kern, S. E., Kinzler, K. W., and Bruskin, A. (1991). Identification of p53 as a sequence specific DNA binding protein. Science, 252:1708-11. 80. Kern, S. E., Kinzler, K. W., Baker, S. J., Nigro, J. M., Rotter, V., Levine, A. J., Friedman, P., Prives, C., and Vogelstein, B. (1991). Mutant p53 proteins bind DNA abnormally in vitro. Oncogene, 6(1):131-6. 81. Kharbanda, S., Yuan, Z. M., Weichselbaum, R., and Kufe, D. (1998). Determination of cell fate by C-Abl activation in the response to DNA damage. Oncogene, 17:3309-3318. 82. Ko, L. J., and Prives, C. (1996). p53 :Puzzle and paradigm. Gene, Dev., 10:1054-1072. 83. Kraiss, S., Quaiser, A., and Oren, M. (1988). Oligomerization of oncoprotein p53. J. Virol., 52:4737-4744. 84. Kubbutat, M. H., Ludwig, R. L., Ashcroft, M., and Vousden, K. H. (1998). Regulation of Mdm2-directed degradation by the C terminus of p53. Mol. Cell. Biol., 18:5690-8. 85. Lane, D. P. (1992). p53, guardian of the genome. Nature, 358:15-16. 86. Lane, D. P., and Benchimol, S. (1990). p53: Oncogene or anti-oncogene? Genes, Dev., 4:1-8. 87. Lane, D., and Crawford, L. (1979). T antigen is bond to a host protein in SV40-transformed cells. Nature, 278:261-263. 88. Lechner, M. S.,Mack, D. H., Finicle, A. B., Crook, T., Vousden, K. H., and Laimins, L. A. (1992). Human papillomavirus E6 protein bind p53 in vivo and abrogate p53-emdiated respression of transcription. EMBO. J., 11:3045-3052. 89. Levine, A. J. (1990). The p53 protein and its interactions with the oncogene products of the small DNA tumor viruses. J. Virol., 177:419-426. 90. Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell, 88: 323-31. 91. Levine, A. J., Momand, J., and Finlay, C. A. (1991). The p53 tumour suppressor gene. Nature, 351:453-6. 92. Li, R., and Botchan, M. R. (1993). The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell, 73:1207-21. 93. Li, X., and Coffino, P. (1996). High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J. Virol., 70:4509-16. 94. Livingstone, L. R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T. D. (1992). Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell, 70:923-35. 95. Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F., Jr., Nelson, C. E., and Kim, D. H. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 250: 1233-1238. 96. Maltzman, W., and Czyzyk, L. (1984). UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol., 4:1689-94. 97. Marshall, C. J. (1991). Tumor suppressor genes. Cell, 64:313-26. 98. McBride, O. W., Merry, D., and Givol, D. (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Natl. Acad. Sci., USA 83:130-4. 99. Mercer, W. E., Nelson, D., Deleo, A. B., Old, L. J., and Baserga, R. (1982).Proc. Natl. Acad. Sci. USA 79:6309-6312. 100. Mercer, W. E., Shields, M. T., Amin, M., Sauve, G. J., Appella, E., Romano, J. W., and Ullrich, S. J. (1990). Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl Acad. Sci. USA 87:6166-6170. 101. Midgley, C. A., and Lane, D. P. (1997). p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene, 15: 1179-89. 102. Miller, C., Mohanadas, T., Wolf, D., Prokocimer, M., Rotter, V., and Koeffler, H. P. (1986). Human p53 gene localized to short arm of chromosome 17. Nature, 319:783-4. 103. Milner, J. (1984). Different forms of p53 detected by monoclonal antibodies in non-dividing and dividing lymphocytes. Nature, 310:143-5. 104. Milner, J., and Metcalf, E. A. (1991). Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell, 65:765-774. 105. Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69:1237-45. 106. Monand, J., Zambetti, G. P., and Olson, D. C. (1992). The mdm-2 oncogene product froms a complex with the p53 protein and inhibites p53-medicted transactivation. Cell, 69:1237-1245. 107. Mora, P. T., Chandrasekaran, K., and V. W. (1980). An embryo protein induced by SV40 virus transformation of mouse cells. Nature, 288:722-724. 108. Mowat, M., Cheng, A., Kimura, N., Bernstein, A., and Benchimol, S. (1985). Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature, 314:633-6. 109. Muller-Tiemann, B. F., Halazonetis, T. D., and Elting, J. J. (1998). Identufication of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc. Natl. Acad. Sci. USA, 95:6079-6084. 110. Munroe, D. G., Rovinski, B., Bernstein, A., and Benchimol, S. (1988). Loss of a highly conserved domain on p53 as a result of gene deletion during Friend virus-induced erythroleukemia. Oncogene, 2:621-4. 111. Murphy, M., Hinman, A., and Levine, A. J. (1996). Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes, & Dev., 10:2971-80. 112. Nigro, J. M., Baker, S. J., Preisinger, A. C., Jessup, J. M., Hostetter,R., Cleary, K., bigner, S. H., Davidson, N., Balin, S., Devilee, P., Glover, T., Collins, F. S., Weston, A., Modali, R., Harris, C. C., and Vogelstein, B. (1989). Mutations in the p53 gene occur in diverse human tumor types.Nature (Lond), 342,705-708. 113. Okamoto, K., and Beach, D. (1994). Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO. J., 13:4816-22. 114. Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L., and Vogelstein, B. (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 358:80-83. 115. Oliner, J. D., Pietenpol, J.A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B. (1993). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 362:857-60. 116. Oren, M., Reich, N. C., and Levine, A. J. (1982). Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Mol. Cell. Biol., 2:443-9. 117. Papathanasiou, M. A., Kerr, N. C., Robbins, J. H., McBride, O. W., Alamo, I., Jr., Barrett, S. F., Hickson, I. D., and Fornace, A. J, Jr. (1991). Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell. Biol., 11:1009-16. 118. Parada, L. F., Land, H., Weinberg, R. A., Wolf, D., and Rotter, V. (1984). Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature, 312:649-51. 119. Picksley, S. M., and Lane, D. P. (1993).The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53?. Bioessays, 15:689-90. 120. Pierre, M., and Evelyne, M. (1999). Twenty years of p53 research:structural and functional aspects of the p53 protein. Oncogene, 18:7621-7636.。 121. Pietenpol, J. A., Tokino, T., Thiagalingam, S., El-Deiry, W. S., Kinzler, K. W., and Vogelstein, B. (1994). Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci., USA, 91:1998-2002. 122. Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A., and Oren, M. (1986). Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature, 320:182-4. 123. Prives, C., and Manfredi, J. J. (1993). The p53 tumor suppressor protein:meeting review. Genes, & Dev., 7:529-534. 124. Raycroft, L., Wu, H., and Lozano, G. (1990). Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science, 249:1049-51. 125. Reich, N. C., and Levine, A. J. (1984). Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature, 308:199-201. 126. Reich, N. C., Oren, M., and Levine, A. J. (1983). Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol. Cell. Biol., 3:2143-50. 127. Reznikov, M. V., Fidler, R., Rubtsov, P. M., Skriabin, K. G., Chumakov, P. M., Prasolov, V. S., and Baev, A. A. (1989). Expression of human growth hormone in cultured mouse fibroblasts. Molekuliarnaia Biol., (Mosk),23:1692-9. 128. Rogel, A., Popliker, M., Webb, C. G., and Oren, M. (1985). p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol. Cell. Biol., 5:2851-5. 129. Rotter, V., Witte, O. N., Coffman, R., and Baltimore, D. (1980). Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, P50. J. Virol., 36:547-55. 130. Rovinski, B., Munroe, D., Peacock, J., Mowat, M., Bernstein, A., and Benchimol, S. (1987). Deletion of 5''-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol. Cell. Biol., 7:847-53. 131. Rowan, S., Ludwig, R. L., Haupt, Y. Bates, S., Lu, X., Oren, M., and Vousden, H. (1996). Specific loss of aopototic but not cell cycle arrest function in a human tumor derived p53 mutant. EMBO J., 15:827-838. 132. Ruppert, J. M., and Stillman, B. (1993). Analysis of a protein-binding domain of p53. Mol. Cell. Biol., 13:3811-20. 133. Sabbatini, P., Lin, J., Levine, A. J., and White, E. (1995). Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes, & Dev.,9:2184-92. 134. Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes, & Dev., 12:2831-41. 135. Sakamuro, D., Sabbatini, P., White, E., and Prendergast, G. C. (1997). The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene, 15:887-98. 136. Selivanova, G., Iotsova, V., Okan, I., Fritsche, M., Strom, M,. Groner, B., Grafstrom, R. C., and Wiman, K. G. (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature, Med., 3:632-8. 137. Selivanova, G., Ryabchenko, L., Jansson, E., Iotsova, V., and Wiman, K. G. (1999). Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell. Biol., 19:3395-402. 138. Seto, E., Usheva, A., and Zambetti, G. P., et al. (1992). Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci., USA 89:12028-32. 139. Shaulian, E., Zauberman, A., Ginsberg, D. and Oren, M. (1992). Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell, Biol., 12: 5581. 140. Shaulsky, G., Ben-Ze''ev, A., and Rotter, V. (1990). Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells. Oncogene, 5:1707-11. 141. Shaulsky, G., Goldfinger, N., Ben-Ze''ev, A., and Rotter, V. (1990). Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol., 10:6565-77. 142. Shaw, P., Bovey, R., Tardy, S., Sahli, R., Sordat, B., and Costa, J. (1992). Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci., USA 89:4495-9. 143. Shaw, P., Freeman, J., Bovey, R., and Iggo, R. (1996). Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene, 12:921-30. 144. Shohat, O., Greenberg, M., Reisman, D., Oren, M., and Rotter, V. (1987). Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene, 1:277-83. 145. Soussi, T., and May, P. (1996). Structural aspects of the p53 protein in relation to gene evolution: a second look. J. Mol. Biol., 260:623-37. 146. Soussi, T., Caron, de, Fromentel, C., and May, P. (1990). Structural aspects of the p53 protein in relation to gene evolution. Oncogene, 5:945-52. 147. Stewart, N., Hicks, G. G., Paraskevas, F., and Mowat, M. (1995). Evidence for a second cell cycle block at G2/M by p53. Oncogene, 10:109-15. 148. Storey, A., Thomas, M., and Kalita, A. (1998). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature, 393:229-34. 149. Sturzbecher, H. W., Chumakov, P., Welch, W. J., and Jenkins, J. R. (1987). Mutant p53 proteins bind hsp 72/73 cellular heat shock-related proteins in SV40-transformed monkey cells. Oncogene, 1:201-11. 150. Subler, M. A., Martin, D. W., and Deb, S. (1992). Inhibition of viral and cellular promoters by human wild-type p53. J. Virol., 66:4757-62. 151. Takahashi, T., D’Amico, D., Chiba, I., Buchhagen, D. L., and Minna, J. D.(1990).Identification of intronic point mutations as an alternative mechanism for p53 inactivation in lung cancer. J. Clin. Invest., 86,363-369. 152. Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., Levitt, M., Pass, H., Gazdar, A. F., and Mimma, J. D. (1989). p53:a frequent target for genetic abnormalities in lung cancer. Science, (Washington DC), 246,491-494. 153. Thut, C. J., Chen, J. L., Klemm, R., and Tjian, R. (1995). p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science, 267:100-4. 154. Unger, T., Nau, M. M., Segal, S., and Minna, J. D. (1992). p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO. J., 11:1383-90. 155. Venot, C., Maratrat, M., Dureuil, C., Conseiller, E., Bracco, L., and Debussche, L. (1998). The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO. J., 17:4668-79. 156. Vogelstein, B., and Kinzler, K. W. (1992). Carcinogens leave fingerprints. Nature 355:209-210. 157. Vogelstein, B., and Kinzler, K. W. (1992). p53 function and dysfunction. Cell, 70:523-526. 158. Vojta, P. J., and Barrett, J. C. (1995). Genetic analysis of cellular senescence. Biochimica, et Biophysica, Acta., 1242:29-41. 159. Wade-Evans, A., and Jenkins, J. R. (1985). Precise epitope mapping of the murine transformation-associated protein, p53. EMBO. J., 4:699-706. 160. Walker, K. K., and Levine, A. J. (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci., USA 93:15335-40. 161. Wang, W. H., Forrester, K., Yeh, H., Feitelson, M. A., Gu, J-R., and Harris, C. C. (1994).Hepatitis B virus X protein inhibits p53 sequence-specifiv DNA binding,transcriptional activity,and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 91:2230-2234. 162. Wang, X. W., Vermeulen, W., Coursen, J. D., Gibson, M., Lupold, S. E., Forrester, K., Xu, G., Elmore, L., Yeh, H., Hoeijmakers, J. H., and Harris, C. C. (1996). The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Gene,s & Dev., 10:1219-32. 163. Wang, Y., and Prives, C. (1995). Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature, 376:88-91. 164. Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes, & Dev., 7:1126-32. 165. Yew, P. R., and Berk, A. J. (1992). Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature, 357:82-5. 166. Yin, Y, Tainsky, M. A., Bischoff, F. Z., Strong, L. C., and Wahl, G. M. (1992). Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell, 70:937-48. 167. Yonish-Rouach, E., Deguin, V., Zaitchouk, T., Breugnot, C., Mishal Z., Jenkins, J. R., and May, E. (1995). Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53. Oncogene, 11:2197-205. 168. Yonish-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J. J., May, P., and Oren, M. (1993). p53-mediated cell death: relationship to cell cycle control. Mol. Cell. Biol., 13:1415-23. 169. Yuan, Z. M., Huang, Y., Fan, M. M., Sawyers, C. L., Kharbanda, S., and Kufe, D. (1996). Genotoxic drugs induce interaction of the c-Abl tyrosine kinase and the tumor suppressor protein p53. J. Biol. Chem., 271:26457-26460. 170. Yuan, Z. M., Huang, Y., Whang, Y., Sawyers, C. L., Weichselbaum, R., Kharbanda, S., and Kufe, D. (1996). Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature, 382:272-274. 171. Zauberman, A., Fiusberg, D., Haupt, Y., Barak, Y., and Oren, M. (1995). Afunctional p53-responsive intronic promoter is contain with the human mdm2 gene. Nucleic, Acids, Res., 23:2584-2592.
|