跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/01 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:矯明昌
研究生(外文):Ming-Tsang Chiao
論文名稱:臺灣肺癌中突變型p53功能之分析
論文名稱(外文):Characterization of p53 Mutants Identified from Lung Carcinoma in Taiwan
指導教授:柯俊良柯俊良引用關係
指導教授(外文):Jiunn-Liang Ko
學位類別:碩士
校院名稱:中山醫學院
系所名稱:毒理學研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:92
中文關鍵詞:p53突變MDM2促進子轉錄活化肺癌抑癌基因
外文關鍵詞:p53mutationMDM2promotertranscriptionlung cancertumor suppressor gene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:3
p53是人類腫瘤抑癌基因,在腫瘤組織中經常發現p53有異常的情形發生。透過對肺癌患者的組織分析中,篩選後決定選用7種不同的突變的p53,分別是H179Y、S240R、R249S、A276D、E286Q、P67C/L194R和G361R,利用基因選殖的方式表現於p53 null的H1299肺癌細胞株中,並且另外選殖了一個MDM2 p53-dependent promoter,並接於luciferase的reporter 質體DNA上,共同送入H1299細胞中,觀察這些突變的p53蛋白轉錄活化的情形。結果顯示在S240R和E286Q仍分別約佔有wild type p53的43%和28%轉錄活化功能的表現,至於其他突變的p53轉錄活化能力都表現低落。而進一步分析這些突變的p53蛋白與MDM2 p53-RE結合的能力,發現除了在S240R有明顯的結合,在E286Q、V143A和P67C/L194R也有微弱的結合反應,其餘突變的p53皆無任何的結合反應,顯示p53蛋白會因突變的位置不同,而影響與DNA結合的能力。此外還利用細胞群落形成效率觀察這些突變的p53蛋白對於抑制癌細胞生長的能力,結果證實S240R具有抑制細胞生長的能力,仍保有部分的抑癌的功能,並與肺癌患者的組織分析結果核對,符合患者的MDM2 mRNA有表現,種種結果顯示突變的p53 S240雖然發生點突變,但是仍然保有部份p53 wild type抑癌的能力。此外有文獻指出利用p53的codon 361~382的peptides可將突變p53原本失去功能恢復,於是利用基因選殖的方式將p53的codon 340~382選殖出來,與p53一起送入細胞,觀察其轉錄活化的情形,結果發現p53 codon 340~382不但不能恢復突變p53蛋白的功能,反而會抑制wild type p53轉錄活化的能力。
p53 is a critical tumor suppressor gene, which can respond to multiple signals of cellular gatekeeper for growth and division. MDM2 gene is one of the downstream target genes for transcriptional activation by the product of p53 tumor suppressor gene. Transactivation of MDM2 gene expression is represented by the presence of a functional p53 protein. To understand the biological function of the mutant p53 that may play the role in tumorigenesis, we construct a number of p53 mutants by site directed mutagenesis (H179Y, P67C/L194R, S240R, R249S, A276D, E286Q, G361R), and followed by characterization with its ability to transactivate MDM2. The MDM2 promoter was ligated into pGL-3 luciferase reporter MDM2-p53RE-pGL3 gene for this assay. We analyzed the expression of these mutants p53 proteins by Western blotting, and the p53 mutants protein-DNA binding activity by gel retardation assay. The transactivation properties of p53 mutants were compared by co-transfecting on MDM2-p53RE-pGL3 into the p53 null cell line H1299 that derived from non small cell lung carcinoma. In order to study the p53 mutant grow suppression ability in tumor cells, performed colony formation assay and the colony number were compared. Mutant p53 S240R and E286Q exhobited the luciferase activity of MDM2-p53RE-pGL3 at about 40% and 30% of the wt p53 vector, respectively. The binding of mutant p53 to the p53 respontive element in MDM2 was analyed by EMSA. Our findings indicated the presence of mutant p53 in the protein-DNA comples and revealed that p53 mutants S240R maintain partial MDM2-p53RE binding activity when compared to wild type p53. It showed that S240R induces apoptosis with just over 21.5 % the efficiency of empty vector (pcDNA 3). The attemp to rescue the mutant p53 protein transactivation by a trans-elememt of trunscated p53 polypeptide correspondary to the carboxy-terminal residues 340-382. Susprisely, this trunscated p53 polypeptide could not restore the transactivation activity of mutant p53. Moreover, it inhibit both the mutant and wt p53 transactivation activity significatly.
一、中文摘要 -------------------------------------------- 2
二、英文摘要 -------------------------------------------- 4
三、緒 言 -------------------------------------------- 6
四、研究動機 ------------------------------------------- 18
五、實驗材料與儀器 ------------------------------------- 20
六、實驗方法 ------------------------------------------- 23
七、實驗結果 ------------------------------------------- 46
八、討 論 ------------------------------------------- 56
九、圖表及圖表說明 ------------------------------------- 66
十、參考文獻 ------------------------------------------- 79
1. Abarzua, P., LoSardo, J. E., Gubler, M. L., Spathis, R., Lu, Y. A., Felix, A., and Neri, A. (1996). Restoration of the transcription activation function to mutant p53 in human cancer cells. Oncogene, 13:2477-82.
2. Agarwal, M. L., Agarwal, A., Taylor, W. R., and Stark, G. R.(1995). p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci., USA 92:8493-8497.
3. Agoff, S. N., Hou, J., Linzer, D. I., and Wu, B. (1993). Regulation of the human hsp70 promoter by p53. Science, 259:84-87.
4. Ania, M., W., Jenniffer, L. F., Matthew, J. F., Waterman, and Thanos, D. H. (1996). Structure-based rescue of common tumor-derived p53 mutants. Nature Med., 2:1143-1146.
5. Attardi, L. D., Lowe, S. W., Brugarolas, J., and Jacks, T. (1996). Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO. J., 15(14):3693-701.
6. Baker, S. J., Fearon, E. R.,dand Nigro, J. M. (1989). Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science, 244:217-221.
7. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K., and Vogelstein, B. (1990). Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 249:912-915.
8. Barak, Y., Gottlieb, E., Juven, T., and Oren, M. (1994). Regulation of mdm2 expression by p53:alternative promoters produce transcripts with nonidentical translation potential. Genes & Dev., 8:1739-49.
9. Barak, Y., Juven, T., Haffner, R., and Oren, M. (1993). Mdm2 expression is induced by wild type p53 activity. EMBO. J., 12:461-468.
10. Ben, D. Y., Prideaux, V. R., Chow, V., Benchimol, S., and Bernstein, A. (1988). Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene, 3(2):179-85.
11. Benchimol, S., Lamb, P., Crawford, L. V., Sheer, D., Shows, T. B., Bruns, G. A., and Peacock, J. (1985). Transformation associated p53 protein is encoded by a gene on human chromosome 17. Somat. Cell Mol. Genet., 11 :505-10.
12. Bouck, N. (1996). p53 and angiogenesis. Biochim. Biophys. Acta., 1287:63-66.
13. Bryan, T. M., Englezou, A., Gupta, J., Bacchetti, S., and Reddel, R. R. (1995). Telomere elongation in immortal human cells without detectable telomerase activity. EMBO. J., 14:4240-8.
14. Bueso-Ramos, C. E., Manshouri, T., Haidar, M., Huh, YO, Keating, M. J., and Albitar, M. (1995). Multiple patterns of MDM2 deregulation in human leukemias:Implication in lekemogenesis and prognosis. Leuk. Lymph., 17:13-18.
15. Bueso-Ramos, C. E., Manshouri, T., Yang, Y., McCown, N. G., Sneige, N., and Albitar, M. (1996). Abnormal expression of multiple MDM-2 proteins in breast carcinomas. Breast, Cancer, Res. Treat., 85:29-40.
16. Bueso-Ramos, C. E.,Yang, Y., Manshouri, T., Feltz, L., Ayala, A., Glassman, A. B., and Albitar, M. ( 1995 ). Molecular abnormalities of MDM-2 in human sarcomas. Int. J. Oncol., 7:1043-1048.
17. Carlos, E., Bueso-Ramos, Yun, Yang, Elizabeth, D., Patrick, M., Sanford, A., and Albitar, M. (1993). The human MDM-2 oncogene is overexpressed in leukemias. Blood, 82:2617-2623.
18. Caron, De., Fromentel, C., and Soussi, T., (1992). TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes. Chromosom. Cancer, 4:1-15.
19. Chen, P. L., Chen, Y. M., Bookstein, R., and Lee, W. H., (1990). Genetic mechanisms of tumor suppression by the human p53 gene. Science, 250:1576-80.
20. Chen, S. H., Shine, H. D., and Goodman, J. C. (1994). Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc. Natl. Acad. Sci., USA 91:3054-57
21. Chiba, I., Takahashi, T., Nau, M. M., D’Amico, D., Curiel, D. T., Mitsudomi, T., Buchhagen, D. L., Carbone, d., Piantadosi, S., Koga, h., Reissman, P. T., Slamon, D. J., Holmes, E. C., and Minna, J. D.(1990). Mutations in the p53 gene are frequent in primary,resected non-small cell lung cancer. Oncogene, 5:1603-1610.
22. Chiba, I., Takahashi, T., Nau, M., D’Amico, D., Curiel, D. T., Mitsudomi, T., Buchhagen, D L., Carbone, D., Piantadosi, S., Koga, H., Davidson, N., Baylin, S., Devilee, P., Glover, T., Collins, F. S., Weston, A., Modali, R., Harris, C. C., and Vogelstein, B. (1989). Mutations in the p53 gene occur in diverse human tumor types. Nature (Land.), 342:705-708.
23. Chin, K. V., Ueda, K., Pastan, I., and Gottesman, M. M. (1992). Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science, 255:459-462.
24. Cho, Y., Gorina, S., Jeffrey, P. D., and Pavletich, N. P., (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 265:346-355.
25. Chow, V., Ben-David, Y., Bernstein, A., Benchimol, S., and Mowat, M. (1987). Multistage Friend erythroleukemia: independent origin of tumor clones with normal or rearranged p53 cellular oncogenes. J. Virol., 61:2777-81.
26. Clore, G. M., Omichinski, J. G., Sakaguchi, K., Zambrano, N., Sakamoto, H., Appella, E., and Gronenborn, A. M. (1995). High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science, 265:386-91.
27. Cook, A., and Milner, J. (1990). Evidence for allosteric variants of wild-type p53, a tumour suppressor protein. Br. J. Cancer, 61:548-52.
28. Dang, C. V., and Lee, W. M. (1989). Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem., 264:18019-23.
29. DeLeo, A. B., Jay, G., Appella, E., Dubois, G. C., Law, L. W., and Old, L. J., (1979). Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl. Acad. Sci., USA 76:2420-4.
30. Diller, L., Kassel, J., and Nelson, C. E. (1990). p53 Functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol., 10:5772-5781.
31. Dittmer, D., Pati, S., and Zambetti, G. (1993). Gain of function mutations in p53. Nat. Genet., 4:42-46.
32. Dutta, A., Ruppert, J. M., Aster, J. C., Winchester, E. (1993). Inhibition of DNA replication factor RPA by p53. Nature, 365:79-82.
33. Ehrhart, J. C,. Duthu, A., Ullrich, S., Appella, E., and May, P. (1988). Specific interaction between a subset of the p53 protein family and heat shock proteins hsp72/hsc73 in a human osteosarcoma cell line. Oncogene, 3:595-603.
34. El-Deiry, W. S., Kern, S. E., Pietenpol, J. A., Kinzler, K. W., and Vogelstein, B. (1992). Definition of a consensus binding site for p53. Nature, Genet., 1:45-9.
35. El-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B. (1993). WAF1,a potential mediator of p53 tumor suppression. Cell, 75:817-825.
36. Eliyahu, D., Goldfinger, N., Pinhasi-Kimhi, O., Skurnik, Y., Arai, N., Rotter, V., and Oren, M. Meth. (1988). A fibrosarcoma cells express two transforming mutant p53 species. Oncogene, 3:313-321.
37. Eliyahu, D., Raz, A., Gruss, P., Givol, D., and Oren, M. (1984). Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature, 312:646-9.
38. Fields, S., and Jang, S. K. (1990). Presence of a potent activating sequence in the p53 protein. Science, 249:1046-9.
39. Finlay, C. A., Hinds, P. W., and Levine, A. J.(1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell, 57:1083-1093.
40. Foulkes, W. D., Stamp, G. W. H., Afzal, S., Lalani, N., McFarlane, C. P., Trowsdale, J., and Campbell, I. G. (1995). MDM2 overexpression is rare in ovarian carcinoma irrespective of TP53 mutation status. Br. J. Cancer, 67:551-559.
41. Funk, W. D., Pak, D. T., Karas, Wright, W. E., and Shay, J. W. (1992). A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol., 12:2866-2871.
42. Galina, S., Lotsova, V., Kiseleva, E., Strom, M., Bakalkin, G., Grafstrom, R. C., and Wiman, K. G. (1996). The single-stranded DNA end dinding site of p53 coincides with the C-terminal regulatory region. Nucleic, Acids, Res., 24:3560-3567.
43. Galina, S., Ryabchenko, L., Jansson, E., Iotsova, V., and Wiman, K. G. (1999). Reactivation of mutant p53 through interaction of C-terminal peptide with the core domain. Mol. Cell. Biol., 19:3395-3402.
44. Gannon, J. V., and Lane, D. P. (1991) Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature (Lond.), 349:802-806.
45. Gannon, J. V., Greaves, R., Iggo, R., and Lane, D. P..(1990). Activating mutations in p53 produce a common conformational effect: a monoclonal antibody specific for the mutant form. EMBO. J., 9:1595-12602.
46. Ginsberg, D., Mechta, F., Yaniv, M., and Oren, M. (1991). Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci., USA 88:9979-83.
47. Givoanni, B., Aronold, J., Levine, and Oren, M. (1999). Mutant p53 gain of function:differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene, 18:477-485.
48. Gorgoulis, V. G., Zacharatos, P. V., Manolis, E., Ikonomopoulos, J. A., Damalas, A., Lamprinopoulos, C., Rassidakis, G. Z., Zoumpourlis, V., Kotsinas, A., Rassidakis, A., N., Halazonetis, T. D., and Kittas, C. (1998). Effects of p53 mutants derived from lung carcinomas on the p53-responsive element (p53RE) of the MDM2 gene. Br. J. Cancer, 77:374-84,
49. Gorgoulis, V., Rassidakis, G., Karameris, A., Papastamatiou, H., Trigidou, R., Veslemes, M., Rassidakis, A., and Kittas, C. (1996). Immunohistochemical and molecular evaluation of the MDM2 gene product in bronchogenic carcinoma. Mod. Path., 9:544-554.
50. Gorina, S., and Pavletich, N. P. (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science, 274:1001-5.
51. Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90:595-606.
52. Hainaut, P., and Milner, J. (1993). Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res., 53:4469-73.
53. Halazonetis, T. D., Davies, L. J., and Kandil, A. N. (1993). Wild-type p53 adopts a “mutant”-like conformation when bound to DNA. EMBO. J., 12:1021-1028.
54. Haupt, Y., Maya, R., Kazaz, A., and Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387:296-299.
55. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H., and Oren, M. (1995). Induction of apoptosis in HeLa cells by trans-activation-deficient p53. Genes, Dev., 9: 2170-83.
56. He, Z., Brinton, B. T., Greenblatt, J., Hassell, J. A., and Ingles, C. J. (1993). The transactivator proteins VP16 and GAL4 bind replication factor A. Cell, 73:1223-32.
57. Hinds, P. W., Finlay, C. A., Frey, A. B., and Levine, A. J. (1987). Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol. Cell. Biol., 7:2863-9.
58. Hinds, P. W., Finlay, C. A., Quartin, R. S., Baker, S. J., Fearon, E. R., Vogelstein, B., and Levine, A. J. (1990). Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the "hot spot" mutant phenotypes. Cell, Growth, & Differ., 1:571-80.
59. Hoilstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., and Sorlie, T. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic, Acids, Res., 22: 3551-3555.
60. Hollstein, M., Rice, K., Greenblatt, M. S., Soussi, T., Fuchs, R., and Sorlie, T. (1994). Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic, Acids, Res., 22: 3551-3555.
61. Hollstein, M., Shomer, B., Greenblatt, M., Soussi, T., Hovig, E., Montesano, R., and Harris, C. C. (1996). Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic, Acids, Res., 24(1):141-6.
62. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. Science, 253:49-55.
63. Horikoshi, N., Usheva, A., Chen, J., Levine, A. J., Weinmann, R., and Shenk, T. (1995). Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol. Cell. Biol., 15:227-34.
64. Hupp, T. R., and D. R., W. Meek, C. A. Midgley, and Lane, D. P. (1992). Regulation of the specific DNA binding function of mutant forms of p53. Nucleic, Acids, Res., 21:3167-3174.
65. Hupp, T. R., and Lane, D. P. (1994). Allosteric activation of latent p53 tetramers. Curr. Biol., 4:865-75.
66. Hupp, T. R., and Lane, D. P. (1994). Regulation of the cryptic sequence -specific DNA-binding function of p53 by protein kinases. Cold, Spring Harbor Symp Biol., 59: 195-206.
67. Hupp, T. R., Meek, D. W., Midgley, C. A., and Lane, D. P. (1992). Regulation of the specific DNA binding function of p53. Cell, 71:875-86.
68. Hupp, T. R., Sparks, A., and Lane, D. P. (1995). Small peptides activate the latent sequence-specific DNA binding function of p53. Cell, 83: 237-245.
69. Iggo, R., Gatter, K., Bartek, J., Lane, D., and Harris, A. L. (1990). Increased expression of mutant forms p53 oncogene in primary lung cancer. Lancet., 335:675-679.
70. Iwabuchi, K., Bartel, P. L., Li, B., Marraccino, R., and Fields, S. (1994). Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci., USA 91:6098-102.
71. Jeffrey, P. D., Gorina, S., and Pavletich, N. P. (1995). Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science, 267:1498-502.
72. Jenkins, J. R., Chumakov, P., Addison, C., Sturzbecher, H. W., and Wade-Evans, A. (1988). Two distinct regions of the murine p53 primary amino acid sequence are implicated in stable complex formation with simian virus 40 T antigen. J. Virol., 62:3903-3906.
73. Jenkins, J. R., Rudge, K., and Currie, G. A. (1984). Cellular immortalization by a cDNA clone encoding the transformation -associated phosphoprotein p53. Nature, 312:651-4.
74. Jenkins, J. R., Rudge, K., Chumakov, P., and Currie, G. A. (1985). The cellular oncogene p53 can be activated by mutagenesis. Nature, 317:816-8.
75. Kaczmarek, L., Oren, M., and Baserga, R. (1986). Co-operation between the p53 protein tumor antigen and platelet-poor plasma in the induction of cellular DNA synthesis. Exp. Cell, Res., 162:268-272.
76. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer, Res., 51: 6304-11.
77. Kastan, M. B., Zhan, Q., and El-Deiry, W. S. (1992). A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell, 71:587-97.
78. Kern, J. A., Schwartz, D. A., and Nordberg, J. E. (1991). Neu expression in human lung adenocarcinomas predict shortened survival. Cancer, Res., 50:5184-91.
79. Kern, S. E., Kinzler, K. W., and Bruskin, A. (1991). Identification of p53 as a sequence specific DNA binding protein. Science, 252:1708-11.
80. Kern, S. E., Kinzler, K. W., Baker, S. J., Nigro, J. M., Rotter, V., Levine, A. J., Friedman, P., Prives, C., and Vogelstein, B. (1991). Mutant p53 proteins bind DNA abnormally in vitro. Oncogene, 6(1):131-6.
81. Kharbanda, S., Yuan, Z. M., Weichselbaum, R., and Kufe, D. (1998). Determination of cell fate by C-Abl activation in the response to DNA damage. Oncogene, 17:3309-3318.
82. Ko, L. J., and Prives, C. (1996). p53 :Puzzle and paradigm. Gene, Dev., 10:1054-1072.
83. Kraiss, S., Quaiser, A., and Oren, M. (1988). Oligomerization of oncoprotein p53. J. Virol., 52:4737-4744.
84. Kubbutat, M. H., Ludwig, R. L., Ashcroft, M., and Vousden, K. H. (1998). Regulation of Mdm2-directed degradation by the C terminus of p53. Mol. Cell. Biol., 18:5690-8.
85. Lane, D. P. (1992). p53, guardian of the genome. Nature, 358:15-16.
86. Lane, D. P., and Benchimol, S. (1990). p53: Oncogene or anti-oncogene? Genes, Dev., 4:1-8.
87. Lane, D., and Crawford, L. (1979). T antigen is bond to a host protein in SV40-transformed cells. Nature, 278:261-263.
88. Lechner, M. S.,Mack, D. H., Finicle, A. B., Crook, T., Vousden, K. H., and Laimins, L. A. (1992). Human papillomavirus E6 protein bind p53 in vivo and abrogate p53-emdiated respression of transcription. EMBO. J., 11:3045-3052.
89. Levine, A. J. (1990). The p53 protein and its interactions with the oncogene products of the small DNA tumor viruses. J. Virol., 177:419-426.
90. Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell, 88: 323-31.
91. Levine, A. J., Momand, J., and Finlay, C. A. (1991). The p53 tumour suppressor gene. Nature, 351:453-6.
92. Li, R., and Botchan, M. R. (1993). The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell, 73:1207-21.
93. Li, X., and Coffino, P. (1996). High-risk human papillomavirus E6 protein has two distinct binding sites within p53, of which only one determines degradation. J. Virol., 70:4509-16.
94. Livingstone, L. R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T. D. (1992). Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell, 70:923-35.
95. Malkin, D., Li, F. P., Strong, L. C., Fraumeni, J. F., Jr., Nelson, C. E., and Kim, D. H. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 250: 1233-1238.
96. Maltzman, W., and Czyzyk, L. (1984). UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol., 4:1689-94.
97. Marshall, C. J. (1991). Tumor suppressor genes. Cell, 64:313-26.
98. McBride, O. W., Merry, D., and Givol, D. (1986). The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Natl. Acad. Sci., USA 83:130-4.
99. Mercer, W. E., Nelson, D., Deleo, A. B., Old, L. J., and Baserga, R. (1982).Proc. Natl. Acad. Sci. USA 79:6309-6312.
100. Mercer, W. E., Shields, M. T., Amin, M., Sauve, G. J., Appella, E., Romano, J. W., and Ullrich, S. J. (1990). Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl Acad. Sci. USA 87:6166-6170.
101. Midgley, C. A., and Lane, D. P. (1997). p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene, 15: 1179-89.
102. Miller, C., Mohanadas, T., Wolf, D., Prokocimer, M., Rotter, V., and Koeffler, H. P. (1986). Human p53 gene localized to short arm of chromosome 17. Nature, 319:783-4.
103. Milner, J. (1984). Different forms of p53 detected by monoclonal antibodies in non-dividing and dividing lymphocytes. Nature, 310:143-5.
104. Milner, J., and Metcalf, E. A. (1991). Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell, 65:765-774.
105. Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J. (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69:1237-45.
106. Monand, J., Zambetti, G. P., and Olson, D. C. (1992). The mdm-2 oncogene product froms a complex with the p53 protein and inhibites p53-medicted transactivation. Cell, 69:1237-1245.
107. Mora, P. T., Chandrasekaran, K., and V. W. (1980). An embryo protein induced by SV40 virus transformation of mouse cells. Nature, 288:722-724.
108. Mowat, M., Cheng, A., Kimura, N., Bernstein, A., and Benchimol, S. (1985). Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus. Nature, 314:633-6.
109. Muller-Tiemann, B. F., Halazonetis, T. D., and Elting, J. J. (1998). Identufication of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc. Natl. Acad. Sci. USA, 95:6079-6084.
110. Munroe, D. G., Rovinski, B., Bernstein, A., and Benchimol, S. (1988). Loss of a highly conserved domain on p53 as a result of gene deletion during Friend virus-induced erythroleukemia. Oncogene, 2:621-4.
111. Murphy, M., Hinman, A., and Levine, A. J. (1996). Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes, & Dev., 10:2971-80.
112. Nigro, J. M., Baker, S. J., Preisinger, A. C., Jessup, J. M., Hostetter,R., Cleary, K., bigner, S. H., Davidson, N., Balin, S., Devilee, P., Glover, T., Collins, F. S., Weston, A., Modali, R., Harris, C. C., and Vogelstein, B. (1989). Mutations in the p53 gene occur in diverse human tumor types.Nature (Lond), 342,705-708.
113. Okamoto, K., and Beach, D. (1994). Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO. J., 13:4816-22.
114. Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L., and Vogelstein, B. (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 358:80-83.
115. Oliner, J. D., Pietenpol, J.A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B. (1993). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature, 362:857-60.
116. Oren, M., Reich, N. C., and Levine, A. J. (1982). Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Mol. Cell. Biol., 2:443-9.
117. Papathanasiou, M. A., Kerr, N. C., Robbins, J. H., McBride, O. W., Alamo, I., Jr., Barrett, S. F., Hickson, I. D., and Fornace, A. J, Jr. (1991). Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol. Cell. Biol., 11:1009-16.
118. Parada, L. F., Land, H., Weinberg, R. A., Wolf, D., and Rotter, V. (1984). Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature, 312:649-51.
119. Picksley, S. M., and Lane, D. P. (1993).The p53-mdm2 autoregulatory feedback loop: a paradigm for the regulation of growth control by p53?. Bioessays, 15:689-90.
120. Pierre, M., and Evelyne, M. (1999). Twenty years of p53 research:structural and functional aspects of the p53 protein. Oncogene, 18:7621-7636.。
121. Pietenpol, J. A., Tokino, T., Thiagalingam, S., El-Deiry, W. S., Kinzler, K. W., and Vogelstein, B. (1994). Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci., USA, 91:1998-2002.
122. Pinhasi-Kimhi, O., Michalovitz, D., Ben-Zeev, A., and Oren, M. (1986). Specific interaction between the p53 cellular tumour antigen and major heat shock proteins. Nature, 320:182-4.
123. Prives, C., and Manfredi, J. J. (1993). The p53 tumor suppressor protein:meeting review. Genes, & Dev., 7:529-534.
124. Raycroft, L., Wu, H., and Lozano, G. (1990). Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science, 249:1049-51.
125. Reich, N. C., and Levine, A. J. (1984). Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature, 308:199-201.
126. Reich, N. C., Oren, M., and Levine, A. J. (1983). Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol. Cell. Biol., 3:2143-50.
127. Reznikov, M. V., Fidler, R., Rubtsov, P. M., Skriabin, K. G., Chumakov, P. M., Prasolov, V. S., and Baev, A. A. (1989). Expression of human growth hormone in cultured mouse fibroblasts. Molekuliarnaia Biol., (Mosk),23:1692-9.
128. Rogel, A., Popliker, M., Webb, C. G., and Oren, M. (1985). p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol. Cell. Biol., 5:2851-5.
129. Rotter, V., Witte, O. N., Coffman, R., and Baltimore, D. (1980). Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, P50. J. Virol., 36:547-55.
130. Rovinski, B., Munroe, D., Peacock, J., Mowat, M., Bernstein, A., and Benchimol, S. (1987). Deletion of 5''-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol. Cell. Biol., 7:847-53.
131. Rowan, S., Ludwig, R. L., Haupt, Y. Bates, S., Lu, X., Oren, M., and Vousden, H. (1996). Specific loss of aopototic but not cell cycle arrest function in a human tumor derived p53 mutant. EMBO J., 15:827-838.
132. Ruppert, J. M., and Stillman, B. (1993). Analysis of a protein-binding domain of p53. Mol. Cell. Biol., 13:3811-20.
133. Sabbatini, P., Lin, J., Levine, A. J., and White, E. (1995). Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes, & Dev.,9:2184-92.
134. Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes, & Dev., 12:2831-41.
135. Sakamuro, D., Sabbatini, P., White, E., and Prendergast, G. C. (1997). The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene, 15:887-98.
136. Selivanova, G., Iotsova, V., Okan, I., Fritsche, M., Strom, M,. Groner, B., Grafstrom, R. C., and Wiman, K. G. (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nature, Med., 3:632-8.
137. Selivanova, G., Ryabchenko, L., Jansson, E., Iotsova, V., and Wiman, K. G. (1999). Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol. Cell. Biol., 19:3395-402.
138. Seto, E., Usheva, A., and Zambetti, G. P., et al. (1992). Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci., USA 89:12028-32.
139. Shaulian, E., Zauberman, A., Ginsberg, D. and Oren, M. (1992). Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell, Biol., 12: 5581.
140. Shaulsky, G., Ben-Ze''ev, A., and Rotter, V. (1990). Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells. Oncogene, 5:1707-11.
141. Shaulsky, G., Goldfinger, N., Ben-Ze''ev, A., and Rotter, V. (1990). Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell. Biol., 10:6565-77.
142. Shaw, P., Bovey, R., Tardy, S., Sahli, R., Sordat, B., and Costa, J. (1992). Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci., USA 89:4495-9.
143. Shaw, P., Freeman, J., Bovey, R., and Iggo, R. (1996). Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene, 12:921-30.
144. Shohat, O., Greenberg, M., Reisman, D., Oren, M., and Rotter, V. (1987). Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene, 1:277-83.
145. Soussi, T., and May, P. (1996). Structural aspects of the p53 protein in relation to gene evolution: a second look. J. Mol. Biol., 260:623-37.
146. Soussi, T., Caron, de, Fromentel, C., and May, P. (1990). Structural aspects of the p53 protein in relation to gene evolution. Oncogene, 5:945-52.
147. Stewart, N., Hicks, G. G., Paraskevas, F., and Mowat, M. (1995). Evidence for a second cell cycle block at G2/M by p53. Oncogene, 10:109-15.
148. Storey, A., Thomas, M., and Kalita, A. (1998). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature, 393:229-34.
149. Sturzbecher, H. W., Chumakov, P., Welch, W. J., and Jenkins, J. R. (1987). Mutant p53 proteins bind hsp 72/73 cellular heat shock-related proteins in SV40-transformed monkey cells. Oncogene, 1:201-11.
150. Subler, M. A., Martin, D. W., and Deb, S. (1992). Inhibition of viral and cellular promoters by human wild-type p53. J. Virol., 66:4757-62.
151. Takahashi, T., D’Amico, D., Chiba, I., Buchhagen, D. L., and Minna, J. D.(1990).Identification of intronic point mutations as an alternative mechanism for p53 inactivation in lung cancer. J. Clin. Invest., 86,363-369.
152. Takahashi, T., Nau, M. M., Chiba, I., Birrer, M. J., Rosenberg, R. K., Vinocour, M., Levitt, M., Pass, H., Gazdar, A. F., and Mimma, J. D. (1989). p53:a frequent target for genetic abnormalities in lung cancer. Science, (Washington DC), 246,491-494.
153. Thut, C. J., Chen, J. L., Klemm, R., and Tjian, R. (1995). p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science, 267:100-4.
154. Unger, T., Nau, M. M., Segal, S., and Minna, J. D. (1992). p53: a transdominant regulator of transcription whose function is ablated by mutations occurring in human cancer. EMBO. J., 11:1383-90.
155. Venot, C., Maratrat, M., Dureuil, C., Conseiller, E., Bracco, L., and Debussche, L. (1998). The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO. J., 17:4668-79.
156. Vogelstein, B., and Kinzler, K. W. (1992). Carcinogens leave fingerprints. Nature 355:209-210.
157. Vogelstein, B., and Kinzler, K. W. (1992). p53 function and dysfunction. Cell, 70:523-526.
158. Vojta, P. J., and Barrett, J. C. (1995). Genetic analysis of cellular senescence. Biochimica, et Biophysica, Acta., 1242:29-41.
159. Wade-Evans, A., and Jenkins, J. R. (1985). Precise epitope mapping of the murine transformation-associated protein, p53. EMBO. J., 4:699-706.
160. Walker, K. K., and Levine, A. J. (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc. Natl. Acad. Sci., USA 93:15335-40.
161. Wang, W. H., Forrester, K., Yeh, H., Feitelson, M. A., Gu, J-R., and Harris, C. C. (1994).Hepatitis B virus X protein inhibits p53 sequence-specifiv DNA binding,transcriptional activity,and association with transcription factor ERCC3. Proc. Natl. Acad. Sci. USA 91:2230-2234.
162. Wang, X. W., Vermeulen, W., Coursen, J. D., Gibson, M., Lupold, S. E., Forrester, K., Xu, G., Elmore, L., Yeh, H., Hoeijmakers, J. H., and Harris, C. C. (1996). The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Gene,s & Dev., 10:1219-32.
163. Wang, Y., and Prives, C. (1995). Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature, 376:88-91.
164. Wu, X., Bayle, J. H., Olson, D., and Levine, A. J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes, & Dev., 7:1126-32.
165. Yew, P. R., and Berk, A. J. (1992). Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature, 357:82-5.
166. Yin, Y, Tainsky, M. A., Bischoff, F. Z., Strong, L. C., and Wahl, G. M. (1992). Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell, 70:937-48.
167. Yonish-Rouach, E., Deguin, V., Zaitchouk, T., Breugnot, C., Mishal Z., Jenkins, J. R., and May, E. (1995). Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53. Oncogene, 11:2197-205.
168. Yonish-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J. J., May, P., and Oren, M. (1993). p53-mediated cell death: relationship to cell cycle control. Mol. Cell. Biol., 13:1415-23.
169. Yuan, Z. M., Huang, Y., Fan, M. M., Sawyers, C. L., Kharbanda, S., and Kufe, D. (1996). Genotoxic drugs induce interaction of the c-Abl tyrosine kinase and the tumor suppressor protein p53. J. Biol. Chem., 271:26457-26460.
170. Yuan, Z. M., Huang, Y., Whang, Y., Sawyers, C. L., Weichselbaum, R., Kharbanda, S., and Kufe, D. (1996). Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature, 382:272-274.
171. Zauberman, A., Fiusberg, D., Haupt, Y., Barak, Y., and Oren, M. (1995). Afunctional p53-responsive intronic promoter is contain with the human mdm2 gene. Nucleic, Acids, Res., 23:2584-2592.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 探討組蛋白去乙醯基抑制劑(SAHA)治療腦腫瘤幹細胞之機轉
2. 台灣男、女性肺癌患者p53基因突變、p53、mdm2蛋白表現和mdm2splicingtranscripts之比較研究
3. 人類細胞珠及周邊血液淋巴球之標的基因修補效率與表達程度之定量:應用於修補能力與抗藥性之相關研究
4. 基因不穩定與基因座缺失參與台灣地區非小細胞肺癌形成機制
5. t-Butylhydroperoxide誘發肝細胞起泡機制之探討
6. 雌性素受體基因表現對DNA鍵結物形成之易感性及肺癌病患預後的影響研究
7. 在老鼠模式中急性酒精暴露對脾臟自然殺手細胞的影響
8. 人類肺癌組織及細胞株中多環芳香烴類受器ArylHydrocarbonReceptor,Ah-ReceptorNuclearTranslocator和CytochromeP4501A1之表現情形
9. 食用油煙萃取物(COF)及Benzo[a]pyrene(B[a]P)對人類肺腺癌細胞株基因表現之影響
10. 肺癌中染色體終端酵素表現與調控機轉之研究
11. 維生素C.E和尿酸對高葡萄糖下內皮細胞胞外間質蛋白質之影響
12. 大蒜精油及其有機硫成分-二稀丙基硫化物、二稀丙基二硫化物及二稀丙基三硫化物調控SD大鼠淋巴細胞和巨噬細胞免疫反應之探討
13. 口腔粘膜下纖維化和口腔癌患者之生活方式與飲食行為調查及營養狀況和免疫功能評估
14. 健康與患有慢性病的老年人其維生素B-6的攝取及營養狀況的評估
15. 人類紅血球細胞膜和磷脂膽鹼微脂粒系統中分配係數對於七種酚類試劑各別以及組合後抗氧化效果的重要性